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Abstract

Recent advances in continuum plasticity: phenomenological modeling and experimentation
using X-ray diffraction.

by

John Kearney Edmiston

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor David J. Steigmann, Co-chair
Professor George C. Johnson, Co-chair

This work explores the field of continuum plasticity from two fronts. On the theory side,
we establish a complete specification of a phenomenological theory of plasticity for single
crystals. The model serves as an alternative to the popular crystal plasticity formulation.
Such a model has been previously proposed in the literature; the new contribution made here
is the constitutive framework and resulting simulations. We calibrate the model to available
data and use a simple numerical method to explore resulting predictions in plane strain
boundary value problems. Results show promise for further investigation of the plasticity
model. Conveniently, this theory comes with a corresponding experimental tool in X-ray
diffraction. Recent advances in hardware technology at synchrotron sources have led to
an increased use of the technique for studies of plasticity in the bulk of materials. The
method has been successful in qualitative observations of material behavior, but its use in
quantitative studies seeking to extract material properties is open for investigation. Therefore
in the second component of the thesis several contributions are made to synchrotron X-
ray diffraction experiments, in terms of method development as well as the quantitative
reporting of constitutive parameters. In the area of method development, analytical tools
are developed to determine the available precision of this type of experiment - a crucial aspect
to determine if the method is to be used for quantitative studies. We also extract kinematic
information relating to intragranular inhomogeneity which is not accessible with traditional
methods of data analysis. In the area of constitutive parameter identification, we use the
method to extract parameters corresponding to the proposed formulation of plasticity for
a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial
extension. These results and the lessons learned from the efforts constitute early reporting
of the quantitative profitability of undertaking such a line of experimentation for the study
of plastic deformation processes.
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Chapter 1

Introduction

On the profession of structural engineering: ‘... modeling materials we do not really
understand, into shapes we cannot really analyze, so as to withstand forces we cannot really
assess, in such a way that the public does not really suspect’ in Winds on High Rise Buildings,
(Parmelee, 1970)

The subject of this thesis falls under the weathered and tattered banner of continuum
plasticity1. In this introductory chapter we explain why such a classical subject still warrants
attention and give an overview of the thesis content. In §1.1 we begin by discussing the
general issues that remain in theoretical and experimental plasticity, as we see them. In
§1.2, the essential source of these issues is diagnosed as being difficulties in experimental and
constitutive frameworks for plasticity; a description of these difficulties is given. Finally in
§1.3 a summary of the rest of the thesis content is given.

1.1 Why plasticity?

Plasticity has been the subject of academic research for over 100 years (Reusch, 1867; An-
drade, 1914; Taylor, 1938; Schmid and Boas, 1950). Over that time, many models of plasticity
have been suggested. Many have been successful for their target application. Given its long
history it follows that one might ask why further study of plasticity is warranted. To this
question we respond with the following two observations from the field:

1. Lack of experimental techniques. Apart from simple tests such as uniaxial tension,
experimental capabilities for the quantitative comparison of plasticity models to physical
data simply have not been developed and/or are not widely available. More details of
these issues will be explained in §1.2. A modern, promising answer to this challenge are

1To set terminology, in this document the term plasticity always refers to plasticity of continuous media.



CHAPTER 1. INTRODUCTION 2

X-ray diffraction experiments, particularly from synchrotron sources (Poulsen et al., 1997)2.
Therefore, as one component of this work we provide detailed information about the ability
of X-ray diffraction experiments to investigate plasticity phenomena. This type of X-ray
diffraction experiment is referred to in the literature as High Energy Diffraction Microscopy
(HEDM) or Three Dimensional X-ray Diffraction (3DXRD) (Poulsen, 2004; Lienert et al.,
2011). Application of the method in several experiments is used to demonstrate how this
method can provide previously unquantified data. In particular, we are interested in using
the technique for constitutive investigation. Furthermore, we would like to determine which
properties and characteristics of single crystals can be obtained by experimentation using
polycrystals.

2. Unexplored gap in theoretical development. These days, the framework most
often used to model the plasticity of single crystals is crystal plasticity (Asaro, 1983). Details
of this model will be given later on in this chapter. For now it suffices to characterize the
model as being physically motivated, based on experimental observations of dislocations
moving through a crystal at the atomic scale.

In contrast, the plasticity of polycrystalline materials has historically been approached
using phenomenological considerations which have few inherent restrictions apart from ma-
terial symmetry or other fundamental relations such as frame-invariance. For example,
many macroscopic polycrystals are reasonably successfully characterized by isotropic mate-
rial symmetry; the well known J2 theory arises from the application of this phenomenological
approach (Malvern, 1969, p. 347). This type of modeling has also been used to describe
certain types of anisotropic polycrystals: the deformation processes required in the produc-
tion of sheet metal result in materials which have been profitably modeled as transversely
isotropic or orthotropic (Barlat et al., 1991; Cleja-Tigoiu and Iancu, 2011).

In summary, researchers of single crystals use crystal plasticity, and researchers of poly-
crystals use classical phenomenology. Although these may each be assessed as phenomeno-
logical theories, a distinguishing feature is that the latter imposes minimal restrictions apart
from material symmetry, whereas the former is constrained to slip system activity. For
the most part, these two similar yet distinct approaches characterize the modern plasticity
literature to date.

Between these two approaches there is a modeling possibility which, at present, remains
unexplored apart from theoretical suggestions: a classically motivated phenomenological the-
ory for single crystals. Certain aspects of this approach may be considered similar to the
formulations used to model polycrystals. However the material symmetries characterizing
single crystals are much more challenging to deal both theoretically and experimentally, than,
e.g., transverse isotropy. Given the widely accepted successes of crystal plasticity, such a
phenomenological theory might seem out of date. On the other hand, in terms of arriving at
answers of practical interest, phenomenological modeling is typically (historically speaking)

2Although synchrotrons are not widely available!



CHAPTER 1. INTRODUCTION 3

excellent. After all, phenomenological relations such as Hooke’s law seem to have turned out
fairly well in terms of guiding structural design. Many similar examples exist, such as Fick’s
law of diffusion for chemical engineering problems. Such formulations exhibit a degree of ele-
gance in the acceptance of our modeling ignorance, and recognition that detailed interactions
of individual atoms will in the end not be important to the goals of a particular macroscopic
application. More precisely stated, these models simply express that complicated physics can
at times be captured better by using a model which is flexible enough to accommodate the
complexity while remaining true to the most fundamental considerations. Therefore, while
physically motivated models like crystal plasticity are clearly attractive, we should keep in
mind the community’s experience from other applications of continuum physics, where the
ability of physical models to describe experimental data at continuum length scales is often
wanting. For example, strain energy functions for rubber materials derived from statistical
thermodynamics considerations prove to be inadequate in comparison to phenomenological
approaches (Treloar, 1974; Ogden, 1982). Furthermore in plasticity itself, there are still
phenomenological observations which have not been well answered, such as the Hall-Petch
effect (Lim et al., 2011).

In conclusion, given the unexplored nature of the modeling framework, along with possi-
ble benefits in certain applications, the second aspect of this thesis is the development of a
classically justified phenomenological model of plasticity for crystalline materials. Constitu-
tive equations are suggested, and numerical predictions of the resulting theory are reported.
The hope is that this work at least gives the proposed approach to plasticity the opportunity
to show itself to be useful. Whether or not it is of course, can be judged upon the basis of
the model’s ability to explain experimental observations.

In the next section, we see that these points are really two aspects of the same fun-
damental problem - the lack of validated constitutive frameworks for plasticity. We share
some general thoughts on the importance of constitutive functions in continuum mechanics,
and explain why the constitutive problem is singularly difficult to establish for theories of
plasticity.

1.2 Challenges in constitutive equations for elastic-plastic

materials

In theories describing the motion of continuum material bodies, constitutive functions re-
lating the motion of the material to the forces generated by the material are required to
make predictions. These functions can only be deduced from experimental observations at
some stage, a theoretical model is not sufficient (even for molecular-level modeling, particle
masses must be known from experiment). With these constitutive functions in hand, numer-
ical simulations can be utilized to make predictions about material behavior under various
situations of practical engineering interest.
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The specification of constitutive functions is usually reducible to the determination of
certain constants which characterize the material behavior. That is, for the same family of
constitutive functions, the numerical values of the constants generally differ from material
to material. Such constants quantify the distinction in physical behavior between dropping
a block of steel from a given height onto the ground from that of water under the same
conditions. Intuitively, the vastly different outcomes expected from this scenario underlines
the importance of determining these material dependent functions and parameters in order
to make predictions. It is noteworthy to point out that in this steel/water example, the
core theoretical framework (balance equations) in both cases are identical - therefore the
determination of the material parameters is crucial in order to make meaningful physical
predictions of material behavior in different conditions.

The experiments required to obtain values for these constitutive parameters are not
always straightforward to execute. For solid elastic bodies, the experimental prescription is
well established, at least for materials which are available as large single crystals. To date,
however, the situation remains challenging for the constitutive specification of functions
involved with elastic-plastic deformation. This is the case for several reasons, which we now
describe.

(1) First, the mathematical description of elastic-plastic deformation requires some notion
of a decomposition of the total material deformation into elastic and plastic parts.3 The task
of measuring both elastic and plastic portions of the deformation immediately causes severe
experimental challenges compared with considering elastic strains alone, challenges which to
date have not been adequately put to rest.

Currently, measuring elastic and plastic strain has the most hope for crystalline materials,
where techniques such as X-ray diffraction give a unique definition of elastic strain. The
total material strain is also measurable at the surface on the same length scale as the X-ray
diffraction measurement with modern techniques such as Digital Image Correlation or DIC,
(Sutton et al., 1986; Vendroux and Knauss, 1998). A proposed experiment would use both
techniques at the same time, thereby enabling the measurement of both elastic and plastic
strain by deducing plastic strain from the independently measured total strain and elastic
strain.

Interestingly, in Taylor’s original experiments on the plasticity of single crystals in the
1920s (Taylor and Elam, 1923), he was essentially able to measure both elastic strain (at
least lattice orientation) and total material strain by using a combination of X-ray diffraction
and the geometric measurement of a set of lines scribed into the material, see Figure 1.1.
Even now, we really haven’t improved experimental techniques for the study of plasticity to
a great degree over the methods of Taylor almost 100 years ago. Digital Image Correlation is
simply a more refined method of measuring total material strain than Taylor used: essentially

3More formal definitions of what is meant by elastic strain vs. plastic strain in this study will be provided
in the next section
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Scribed lines

Figure 1.1: Scribed lines on the single crystals used in Taylor’s experiments, translated from
(Taylor and Elam, 1923). Taylor’s careful measurements of these lines gave an estimate
of the total material deformation. At the same time, X-ray diffraction measurements were
performed, giving an estimate for the lattice strain (orientation). This complex experimental
technique is required for constitutive validation of elastic-plastic constitutive equations, but
executing such a program with modern technology is still not easily achieved.

taking a ruler to measure the evolving lengths of material lines. X-ray diffraction technology
has also improved, so that full elastic strain tensor can be estimated instead of only the
orientation component. However the basic method for X-ray analysis is the same as for
Taylor. Only the data collection hardware and the quality of X-rays have changed.

(2) The second reason constitutive specification for elastic-plastic deformation is challeng-
ing is that there are simply many constitutive functions to determine, many more than for
elasticity for instance. In the theory developed here, we will see that at a bare minimum,
we require the specification of a plastic flow rule, which describes the time evolution of the
plastic strain. The flow rule might simply be a function of, say, a stress measure. Based
on the experimental challenges mentioned in the previous paragraph, however, the task of
determining this ‘simple’ function is difficult enough to accomplish. The situation becomes
progressively more complicated as arguments which are necessary to capture phenomenology
associated with plasticity are added to the constitutive functions. For example, incorporat-
ing hardening behavior into the model necessitates additional functional arguments, hence
additional experimental measurements, and therefore a greatly complicated experimental
picture.

Summary. Clearly, the experimental undertaking required in obtaining constitutive func-
tions for elastic plastic deformation of single crystals is challenging. The challenges to produc-
ing a constitutive framework validated by experimental data for elastic plastic deformation
have not been significantly reduced since Taylor’s time. This is probably one reason con-
tinuum plasticity is still subjected to new theoretical formulations. The lack of constitutive
information and experimental validation enables such a proliferation of formulations. Ad-
mittedly, in this work we further muddle this state of affairs, by adding another formulation
of plasticity to the mix. However, we also describe how this theory may be investigated
experimentally, and establish calibration of constitutive functions to available data. That is,
we pay our debt, so to speak.
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1.3 Overview of thesis content

The primary contributions in this work present progress in plasticity by developing an ex-
tension of phenomenological plasticity to single crystals, as well as a detailed analysis of a
modern class of synchrotron X-ray diffraction experiments. These topics are naturally syn-
ergistic since X-ray diffraction is required to execute an experimental investigation of the
proposed theory. They also share a clean commonality of formulation. We now describe a
more detailed summary of the thesis. What are felt as novel contributions to the field are
pointed out as they are addressed, in order to draw experienced readers’ attention.

In Chapter 2, we develop the phenomenological formulation of single crystal plasticity
and give numerical predictions. The theoretical development is in the family of work by
Fox (1968); Naghdi and Srinivasa (1993a); Gupta et al. (2011). The present contribution is
made distinct from these previous works by developing these models to the level of detail
needed to make numerical predictions, then coding and executing the simulations. For the
first time, therefore, the validity of the previously proposed phenomenological frameworks
for single crystals can be critically examined against experimental observations.

Of primary importance, this task requires the construction and validation of constitutive
functions. One may be tempted to consider the problem of writing down constitutive func-
tion representations for crystals trivial, upon recognition of the presence the review article by
Zheng (1994). These methods use the elegant structural tensor approach to generate consti-
tutive functions in a systematic fashion (Liu, 1982). However, for higher symmetry crystals
such as cubics, the representation problem is not as easy as with low crystal symmetries like
monoclinic, for instance. If high symmetry crystals were of little use in applications, this
may not pose a problem, but high symmetry crystals include the practically important struc-
tural metals such as iron (BCC), aluminum (FCC), and titanium (HCP). Furthermore, the
structural tensor approach becomes rapidly less favorable when considering multiple tensor
arguments (Xiao, 1996), as we will require.

We found that producing appropriate constitutive functions for the symmetry groups
characterizing crystals requires a certain willingness to tolerate relatively lengthy mathe-
matical procedures needed to reduce the constitutive equations. In fact, the tedious nature
of generating these functions may be one cause of the previously mentioned gap between
J2 phenomenological plasticity and slip system based crystal plasticity4. We give examples
which should be sufficient to develop constitutive functions for each of the 32 crystal point
groups, for functions of several arguments. In particular the maximal cubic symmetry and
maximum hexagonal symmetry groups are investigated. This contribution is further embold-
ened by providing a calibration of the constitutive framework against available data. These
efforts open up this line of modeling to further application-based study by the community,
and is a useful outcome of the modeling component of this thesis.

4As we will see, the formulation of slip system based crystal plasticity cleverly avoids these computations.
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A second contribution is that the numerical framework has the capability to compute
the geometrically necessary dislocations as a quantity derived from the spatial gradients in
plastic deformation. The role of geometrically necessary dislocations in theories of plasticity
is not a new notion (Acharya and Bassani, 2000; Gupta et al., 2007), however incorporating
such quantities into simulations is more recent (Lele and Anand, 2009). Therefore we exam-
ine the predictions resulting from several proposed constitutive functions which incorporate
hardening due to geometrically necessary dislocations.

Next we examine experimental aspects of the theory. In Chapter 3, we discuss modern
synchrotron X-ray diffraction techniques from the HEDM and 3DXRD family in detail. To
date, the method has been successful in terms of discovery type research, which is important
but is of a qualitative nature. It remains to be determined what else the experiment can
be used for. Here, we are interested in using it to investigate constitutive behavior of single
crystals. Several early studies along these lines are reported in the literature (Bernier et al.,
2008; Efstathiou et al., 2010) but further research is needed. We recast the kinematic theory
of X-ray diffraction from a mechanics, as opposed to crystallographic, perspective. This
imbues a natural synergy between single crystal plasticity and X-ray diffraction which is
hopefully appealing to non-crystallographers, and highlights the natural relation between
X-ray diffraction and the theory developed in Chapter 2. These background sections should
then serve as a good one-stop reference for other crossover researchers from mechanics to
applied crystallography, although they are also needed as the foundation for modeling efforts
in later sections of the chapter.

Following this background, we examine two novel methods of analyzing the data from
this type of experiment. The first method is targeted at investigating the attainable precision
from the measurements, i.e. uncertainty analysis. Such uncertainty analysis determines the
strength of the conclusions which can be made from a given experiment, and is particularly
important to consider in the constitutive context (Zohdi, 2001). The second method develops
the theory for numerical implementation of a novel approach to lattice refinement which can
quantify the intragranular texture development in single crystal grains by forward modeling
individual diffraction peak intensities. It should be emphasized that the deductions from
these approaches to the analysis of X-ray diffraction data are not accessible with conventional
methods. Finally, the model and experiment are brought into direct alignment when we
extract constitutive parameters from the plasticity theory by analyzing the data from a
titanium alloy loaded in tension with in situ X-ray experimentation.
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Chapter 2

Phenomenological Plasticity

Chapter overview. In this chapter we develop the theoretical foundations of the proposed
model for single crystal plasticity. An attractive goal of the theory is for it to be amenable
to investigating using a prescribed experimental approach. In light of this all quantities
presented in the theory are directly measurable using X-ray diffraction experiments1.

The theoretical basis for the plasticity model is similar in thinking to those previously
proposed in the literature (Fox, 1968; Naghdi and Srinivasa, 1993a,b; Gupta et al., 2011).
The basic idea in these theories is that, in addition to the standard mathematical structure of
a continuum, a triad of inertia-less directors is defined at each material point. The directors
characterize the stress response of the material, which in turn couples to the overall material
motion through balance laws. Importantly, during plastic deformation the directors evolve
independently of the material. In the present theory, these directors are interpreted as
the (direct) lattice vectors of the crystal. Since the direct lattice is isomorphic with the
reciprocal lattice, and X-ray diffraction measures the reciprocal lattice, we can therefore
obtain experimental measurements of the directors.

At a minimum, this theory requires constitutive functions for the stress response and
the evolution of the directors during plastic flow. The main contribution in this chapter is
that we develop these constitutive functions for various classes of crystal symmetries, e.g.
cubic, hexagonal (Green and Adkins, 1970). These functions are the missing ingredient
in, for instance, previous papers (Fox, 1968; Naghdi and Srinivasa, 1993a,b; Gupta et al.,
2011), which has limited the investigation and subsequent judgment of the viability of the
formulation until this point. Based on the importance of cubic crystals in engineering (e.g.
aluminum (FCC), iron (BCC)), we calibrate several proposed constitutive functions for cu-
bic crystals against available data. This data is generated through simulations of crystal
plasticity models from the literature. In Chapter 3 we also calibrate a hexagonal crystal
model directly against X-ray diffraction data. Together, the proposed constitutive functions
for several crystal symmetries with calibrated parameters constitute the one outcome from

1X-ray diffraction theory and application is discussed in Chapter 3.
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this chapter.
We then implement the model in numerical plane strain simulations to test its predictions

in illustrative boundary value problems. A benefit of the numerical framework we use is that
it enables the computation of geometrically necessary dislocations from gradients in the
plastic deformation field. Several authors have proposed incorporating such information into
the plastic constitutive equations (Acharya and Bassani, 2000; Gupta et al., 2007), but only
recently has this been reported on numerically (Lele and Anand, 2009). In the work of Lele
and Anand (2009), it is not clear how to relate their definition of geometrically necessary
dislocations to ours, since their material is isotropic, which we do not restrict ourselves to
here. Therefore, the numerical predictions of geometrically necessary dislocations and their
incorporation into constitutive functions for cubic crystals are a second contribution from
this chapter.

Content of chapter. In §2.1, a historical review of plasticity research is given. We explain
the fundamental discoveries resulting from G.I. Taylor’s influential experiments, and summa-
rize the largely independent evolutions of crystal plasticity and phenomenological plasticity.
We also discuss objections that have been leveled toward these two approaches to plasticity.
In §2.2, we develop the advertised theory of phenomenological plasticity for single crystals.
Relevant thermodynamics and balance laws are recorded, along with the general constitutive
framework. We describe a rate independent model, as well as the rate dependent, viscoplas-
tic extension. In §2.3, more precise constitutive functions are posed by accepting additional
hypotheses such as maximum plastic dissipation. Phenomenological constitutive equations
for single crystals are difficult to determine, particularly for high symmetry crystals such
as cubics. This difficulty may be one reason previous researchers have not attempted the
present approach to modeling single crystal plasticity. In an attempt to make the framework
more appealing for future investigation, in §2.3 we provide detailed examples of the gener-
ation of constitutive equations for several crystal types. The hope is that these examples
serve as points of reference should other researchers utilize this model for any of the 32 crys-
tallographic point groups. In §2.4 the theory and constitutive framework from the previous
sections are implemented into numerical simulations. The phenomenological constitutive
model is calibrated against data by using material point simulations constructed to approx-
imate experimental techniques. The data is obtained through simulation, using calibrated
crystal plasticity models from the literature in the same material point simulation. Finally,
plane strain boundary value problems are executed. The results are assessed for qualitative
properties such as the localization of plastic flow and development of geometrically neces-
sary dislocations. A lack of experimental data restricts the investigation beyond this level
of detail. Since the constitutive framework is basically open, several parameter studies are
performed. In particular, implications of hardening and plastic flow viscosity are examined.
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2.1 Background

The goal of this section is to review aspects of the history of plasticity. In this way we can
see a zoomed out view of plasticity theories, in hopes that the gap in development mentioned
in §1.1 becomes evident. We begin by reviewing G.I. Taylor’s experimental work (Taylor
and Elam, 1923), which eventually led to modern crystal plasticity. We then discuss the
simultaneous but independent developments of crystal plasticity and classically motivated
phenomenological plasticity. Finally we discuss objections which have been leveled at both
approaches to plasticity. It is important to note that all objections made carry admittedly
little weight until the experimental challenges to investigating plasticity phenomena noted
in §1.2 are answered.

2.1.1 Historical review of continuum plasticity

In this section we give a brief history of continuum plasticity. We first give an account of
Taylor’s contributions to plasticity. Then we describe the subsequent development of the
current gold standard modeling framework, crystal plasticity. We also review the devel-
opment of phenomenological theories similar to the one we will be employing later in the
chapter. We begin with a brief exposition on an atomistic view of plasticity in crystals, the
main ideas of which are commonly seen in undergraduate texts of materials science.

Review: crystal slip. In materials science, the description of the mechanics of plastic de-
formation of single crystals is dominated by the notion of slip. Kinematically, slip is a simple
shear deformation on particular crystallographic lattice planes in particular crystallographic
directions. Recall that the deformation gradient for a simple shear motion is written as

F = I+ γs⊗ n, (2.1)

where F is the deformation gradient, I is the identity, n is the normal to the plane of shear,
s is the direction of the shearing motion, and γ is the magnitude of the shear. For later use,
the velocity gradient corresponding to time evolution of γ in (2.1) is given by

ḞF−1 = γ̇s⊗ n, (2.2)

where γ̇ = γ,t is the rate of shear on the slip system.
According to experimental studies near the atomic scale, plastic deformation is accom-

modated by the motion of dislocations on certain planes in the material. The motion of a
large number of dislocations on the same family of lattice planes approximates the shearing
motion given by Equation (2.1). This shear deformation mechanism becomes active when
the resolved shear stress on the dislocation reaches a certain critical level. Given an appro-
priate stress measure T (say, the Cauchy stress), the traction vector, t, on the shear plane
with normal n is given by t = Tn. The resolved shear stress conjugate to the shearing
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motion (2.1) is then given by projecting the traction vector t on the shear direction, giving
the quantity τ = Tn · s, where τ is the resolved shear stress. Typically, we impose that for
τ < τc, where τc is a certain critical stress level, there is no slip. For resolved stresses at or
above τc, the shear rate γ̇ is non zero, and a shearing motion of the form (2.1) is manifested
in the material over time.

These notions of plastic deformation, which are accepted as obvious to modern students
of engineering or materials science, were not given an experimental foundation until the work
of G.I. Taylor in the 1920s-1930s (Taylor and Elam, 1923; Taylor, 1938). His experiments
showed that simple shear, (2.1), was indeed the deformation mode present in crystals. This
was deduced by loading specially prepared samples in tension, and simultaneously using X-
ray and visual measurements of the lattice and material, respectively. Although simple shear
was suggested as the deformation mode of crystals based on previous observations of glide
bands in single crystals, see for instance Schmid and Boas (1950, p. 57), Taylor examined
the problem without accepting this notion a priori.

In many respects, the experiments of Taylor have not been surpassed - since in his
work both material deformation, F, and lattice deformation, denoted H, were measured
independently. Due to the importance of Taylor’s contribution to the mechanics of crystals,
and as an interesting point of historical discussion, we review his experimental method and
subsequent deductions in the next section.

2.1.2 Contributions of G.I. Taylor

The advent of many concepts in modern plasticity are generally attributed to G.I. Taylor’s
experiments in the 1920s. In this section we give a short overview of Taylor’s methods
and findings. We focus on the experiment reported by Taylor and Elam (1923). In these
experiments, large single crystals of aluminum, machined into a parallelepiped geometry,
were scribed with a set of lines, see Figure 1.1. These samples were loaded in axial tension,
until plastic flow commenced. At various points during this process, the scribed lines were
used to measure the total material deformation in the sample, by measuring angles and
lengths with microscopes and micrometers (Taylor and Elam, 1923). Simultaneously, X-ray
diffraction measurements were made, monitoring the rotation of the crystal. They extended
the crystal up to 78% total strain, measuring the material deformation at various times
during the test.

Analysis of their data resulted in the following deductions. From the X-ray observations,
they found that during the extension, the material remained of the same crystal symmetry.
From the total deformation, they found that the material density was essentially constant.
Based on these findings, and perhaps some hints from glide band geometry, they decided to
examine what they call the unstretched cones in the material. The term cone is somewhat
laden with connotation; here the unstretched cones are the sheets of material that remain of
the same Euclidean length at various stages of deformation. They are not necessarily a cone
shape in normal usage of the term.
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For a visualization of the unstretched cone upon different deformations in a two dimen-
sional schematic, see Figures 2.1(a) and 2.1(b), which depict simple shear and axial extension,
respectively. In these figures, an initial array of material points is traced by a circle. Upon
deformation, these points map to become elliptical shapes. The unstretched cone is defined
instantaneously by the line segments which may have rotated but do not change in length.
Using the constant length attribute, the unstretched cone can be plotted geometrically by
finding the points of intersection between the deformed ellipse and the initial circle, as shown
in Figures 2.1(a), 2.1(b). In the book by Havner (1992), Taylor’s expressions for determin-

shear
unstretched cone

(a) Simple shear.

unstretched cone

extension

(b) Uniaxial extension.

Figure 2.1: Two-dimensional depiction of the unstretched cone, in a homogeneous simple
shearing deformation on the left and uniaxial extension on the right. The initial material
points traced by the circle are deformed into an ellipse. The line elements in the material
with the same length at the deformed and undeformed state constitutive the unstretched
cone. This cone is defined at the intersection between the initial circle and the ellipse.

ing the unstretched cone are simplified mathematically; they are concisely expressed as the
directions v, such that

v · FTFv = 1, (2.3)

where F is the material deformation gradient, and v is the unit vector of unextended direc-
tion.

Taylor’s original published results of the unstretched cones are reproduced in Figures
2.2 and 2.3. In these figures, the unit directions v satisfying Equation (2.3) are projected
onto the stereographic net, which is shown in Figure 2.4. To make sense of the symbols in
Figures 2.2 and 2.3, assign a standard spherical polar coordinate map to v. Then the crosses
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in the figures represent material directions for which θ ≥ π/2, where θ is the polar angle,
and the solid dots represent material directions for which θ < π/2. Figure 2.2 represents
the unstretched cone data up to 40% axial strain, while Figure 2.3 represents the same data
from 40 - 78% axial strain. There are clearly some qualitative differences between the two
levels of deformation, which we explain next.
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Figure 2.2: Experimental data of the unstretched cones from (Taylor and Elam, 1923).
The crosses indicate projected points which have spherical polar angle θ ≥ π/2 dots are at
θ < π/2. This data is similar to what would be expected upon a simple shear deformation,
see Figures 2.1(a), 2.5(a).
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Figure 2.3: Experimental data of the unstretched cones from (Taylor and Elam, 1923).
The crosses indicate projected points which have spherical polar angle θ ≥ π/2 dots are at
θ < π/2. This data is similar to what would be expected upon a uniaxial deformation, see
Figures 2.1(b), 2.5(b).
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Figure 2.4: Stereographic net used to visualize the projection of unit vectors onto a two
dimensional plane, from (Taylor and Elam, 1923). To relate this to a familiar object, the
vertical lines meeting at the poles represent longitude, the corresponding orthogonal set of
lines represent latitude.
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Analysis of Taylor’s results. The low strain result of Figure 2.2 has an unstretched cone
consisting of what are apparently two planes, cutting through the initial material ellipsoid (a
sphere in three dimensions). Taylor deduced that this indicates that simple shear deformation
is indeed prevalent during plastic deformation. To see this, we first generalize the two
dimensional schematics in Figures 2.1(a) and 2.1(b) to three dimensional deformation in
Figures 2.5(a) and 2.5(b). In three dimensions, these figures show how a simple shear
deformation has two unextended planes, while uniaxial extension produces a conical section
which projects to a circle on the stereographic projection.

Comparing the simple shear deformation depicted in Figure 2.5(a) to the data in Fig-
ure 2.2 shows that the simple shear hypothesis appears valid up to moderate extensions. For
higher strains, the data in Figure 2.3 compares more favorably to Figure 2.5(b), which de-
picts an axial extension. This latter case can probably be explained by a history of multiple
slip, that is, that two slip systems eventually became activated.

In summary, Taylor’s experimental measurements indicated that simple shear kinematics
of plastic deformation of single crystals is experimentally observed. As a secondary observa-
tion, they found that multiple slip occurs at higher extensions, in which case the unstretched
cone looks more like that of a volume preserving uniaxial deformation.

unstretched cone

(a) Simple shear.

unstretched cone

(b) Uniaxial extension.

Figure 2.5: Three dimensional illustration of the unstretched cones for simple shear on the
left and axial extension deformation on the right. The projection of the unstretched cone
on a stereographic net for simple shear more closely represents the data in Figure 2.2 than
Figure 2.3, and vice versa.
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Subsequent developments in plasticity. Taylor’s conclusive deductions of simple shear
slip kinematics led to a long history of experimental and theoretical development of single
crystal slip, in the years leading up to roughly 1970. See (Bell and Green, 1967) for a critical
review of many studies of the deformation of single crystal wires in tension up to that point
in time. This quantitative experimental work set the foundations for the development of
crystal plasticity in the 1980s.

Meanwhile, during this activity of investigating slip in single crystals in the years 1920-
1970, the modern theory of continuum mechanics was under development. These theories
were concerned with determining the most fundamental aspects of general continuum theory.
After considering thermodynamic restrictions, the only impositions on constitutive functions
were due to material symmetry requirements and observer invariance. Constitutive hypothe-
ses such as equipresence2are probably open for debate from practical grounds. Typically,
the form of these constitutive functions was in the form of polynomials, due to convenience.
For an arbitrary constitutive function, there is no physical reason polynomials should be
preferred. Nevertheless, there are many examples of successes with simple polynomial con-
stitutive functions. For the strain energy function, a quadratic order polynomial in the strain
tensor leads to a linear elastic stress response for instance.

With regard to plasticity theory in particular, applied studies from the phenomenologi-
cal/continuum school were largely concerned with polycrystalline materials. J2 plasticity is
probably the best known example. J2 theory arises as a phenomenological formulation by
considering isotropic material symmetry, which is a reasonable approximation for polycrys-
tals at sufficiently large length scales. The application of similar phenomenological formu-
lations to single crystal plasticity was apparently overlooked however, at least with regard
to developing constitutive equations and examining applications. Instead of this seemingly
natural evolution, crossover between the experimental foundations of single crystal slip and
continuum mechanics theory began to overlap with the works of Rice (1971), Hill and Rice
(1972), Hill and Havner (1982), and Asaro (1983). These important combinations eventu-
ally culminated in modern computational crystal plasticity (Peirce et al., 1983; Asaro and
Needleman, 1984), which is an up-scaling of Taylor’s experimental findings based on (2.2) to
model a phenomenological combination of deformation modes due to the presence of differ-
ent slip systems. The basic framework of crystal plasticity hasn’t changed much in structure
since these foundations were laid, nearly 30 years ago.

We now examine some of the details of modern crystal plasticity models. Havner (1992)
suggests that the advent of crystal plasticity is an outgrowth of the constitutive equation for

2The principle of equipresence states that if a constitutive function is presumed to have certain dependen-
cies, say T = T̂(A,B,C, ...), then any other constitutive function should have the same set of dependencies
as long as such a form does not violate a more fundamental physical relationship.
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slip plane flow apparently first suggested by Hutchinson (1976)

γ̇α = η̇0
τ (α)

τ
(α)
0

∣∣∣∣∣τ (α)τ
(α)
0

∣∣∣∣∣
n−1

, γ̇0 > 0, (2.4)

where τ (α) = T · (sym (s(α) ⊗ n(α)) is the resolved shear stress on the αth slip system,

s(α),n(α) are the current slip direction and slip plane normal, respectively, and τ
(α)
0 , η̇0, n are

material parameters representing physics akin to a stress scale, reference shear rate, and
rate sensitivity, respectively (Havner, 1992). The parameter n falls between 3 and 8 for most
metals, according to Hutchinson (1976). The shear rates γ̇α are then incorporated into slip
kinematics of the form (2.2). In modern crystal plasticity theories, the constitutive equation
for plastic flow has been refined and improved to the most often used form

Ḟp(Fp)−1 =
∑
α

γ̇αsα0 ⊗ nα
0 , (2.5)

where Fp ∈ GL(3,R) is the plastic deformation. Here sα0 ,n
α
0 are the slip direction and

normal in a fixed intermediate configuration of the lattice (Asaro, 1983). The shear rate γ̇α

is typically given by, (see Anand et al. (1997); Barton et al. (2005), among others)

γ̇α = γ̇0

(
|τα|
sα

)1/m

sign(τα), (2.6)

where τα = S · sα0 ⊗ nα
0 is the resolved shear stress on the slip system, S is the symmetric

Piola-Kirchoff stress in the intermediate configuration of the lattice, sα is the flow resistance
for the slip system, γ̇0 represents a reference shear rate, andm is a rate sensitivity parameter.
The total material deformation is constructed using the multiplicative decomposition

F = FeFp, (2.7)

where Fe is the elastic deformation. Some familiarity with crystal plasticity is assumed in this
section and we do not go into further details. Comments on the intermediate configuration
of the lattice, and other quantities are given in a later section; here the goals are to introduce
the historical development.

The original application for Equation (2.4) was to model plasticity at elevated temper-
atures Hutchinson (1976). Although authors such as Havner (1992, p. 201) suggest that
applying equations similar to (2.4), (2.5), (2.6) to analyze mechanics at ordinary tempera-
tures are ‘computational expedients’, he acknowledges that macroscopic texture predictions
have been successful with the method. The reduction of plastic flow to the form (2.5) along
with the Taylor hypothesis for polycrystals also gave rise to alternate views of analyzing
deformation textures which effectively avoid the solution of solving the full boundary value
problem (Mathur and Dawson, 1989; Bohlke et al., 2006).
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In contrast to this history of robust work based on crystal plasticity hypotheses, applica-
tions of classically motivated phenomenological theories of plasticity have generally been rel-
egated to polycrystalline materials. Although theoretical development of these phenomeno-
logical theories has continued (Gupta et al., 2011; Cleja-Tijoiu, 2003), most modern work,
and certainly most incorporation of experimental information, appears to be in the sheet
metal community. For example, deformation-induced anisotropy from the rolling process re-
quires phenomenologically derived anisotropic yield functions (Barlat and Lian, 1989; Barlat
et al., 1991, 2005) which are measured by punching out tensile specimens from the sheet and
performing uniaxial tension tests.

Of late, there has been renewed interest in refinements to phenomenological theories
of anisotropic materials due to the elegant mathematical structures available (Cleja-Tijoiu,
2003; Gupta et al., 2011; Steigmann and Gupta, 2011). However apart from a few studies
of related formulations (Papadopoulos and Lu, 2001), analysis of these phenomenological
theories remains of a theoretical nature. It bears repeating that one large obstacle to testing
the capabilities of the phenomenological modeling regime is the lack of experimental data
(Papadopoulos and Lu, 2001, section 5). Crystal plasticity does not suffer from this obstacle
as much, since the vast assortment of single crystal experiments done in the decades after
Taylor’s experiments (Bell and Green, 1967) can be directly implemented into constitutive
equations of the form (2.6).

It might be thought possible to calibrate a phenomenological model based on the same
data used to inform crystal plasticity. However, as noted by Bell and Green (1967), most if
not all of the data from these tests are presented in such a way that it is not possible to re-
deduce phenomenological constitutive behavior. For example, the classical crystal plasticity
experiment of the time (1920-1970) was uniaxial tension tests on single crystal wires. The
data from these tests are presented in the literature by resolving the shear stress on the
active slip plane (Bell and Green, 1967). In hindsight, it would have been more useful to
have the uniaxial stress-strain data, along with the associated lattice orientation. Such data
could then be used to calibrate a phenomenological model, which by nature does not suppose
the simple slip shear mode a priori.

Lack of usable data aside, the present work attempts to breathe some life into a phe-
nomenological theory which is amenable to investigating using an experimental methods
such as X-ray diffraction. We calibrate the model against a crystal plasticity prediction from
the literature. Although not as good as data, it will have to suffice. Of note, in Chapter 3,
we calibrate directly against X-ray data for a titanium alloy.

In the next sections, we highlight potential objections which have been made in the
literature against both crystal plasticity and classical phenomenological approaches. For
single crystals in prescribed orientations and under quasistatic conditions, models which
reduce to single slip, such as (2.5), make for an excellent model, as Taylor’s experiments
showed. The question of behavior in more complicated situations, such as a single crystal
embedded in a polycrystal, the influence of rate dependence, and the presence of large
elastic strains and/or hardening, is more open experimentally. We should keep in mind
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that experimental investigations of crystal behavior in these sort of practical but complex
situations has been limited, to date. Until this state of affairs improves, a degree of open-
mindedness should be kept toward alternate modeling approaches which are backed up by
experimental observations.

2.1.3 Deficiencies of crystal plasticity

Although crystal plasticity has been dominant in the computational plasticity community
over the last 30 years, it is not without detractors. Recall that the characteristic hypothesis
of crystal plasticity is form of the flow rule, written in Equation (2.5). An important thing
to note in regard to (2.5) is that, although physically motivated, it is still phenomenological
since slips are assumed to occur simultaneously, and not sequentially. When viewed as a
phenomenological theory, however, the form of the plastic flow is restricted by the supposed
physics of the material behavior, which may leave deformation modes exhibited in true
materials difficult or even impossible to manifest in the theory (consider how to model plastic
volumetric flow in the context of crystal plasticity, for instance). In essence, as the physics
and true slip behavior becomes more complicated, it is possible that an approach following
the structure of Equation (2.5) may detectably differ from experimental observations. The
point we are trying to make is that the form of the flow rule potentially limits the flexibility
of the theory to be predictive for the macroscopic quantities which are typically of interest
for engineering purposes, e.g. the macroscopic phenomenology.

One objection to the model from the point of view of mathematical elegance is because the
classically considered rate independent limit is not possible to achieve in crystal plasticity.
This is due to the non-uniqueness of slip systems required to accommodate a particular
plastic deformation (Havner, 1992). Therefore, in computations, either serious modifications
of the update algorithm are needed, or crystal plasticity must assume that all slip systems
are active simultaneously, hence the use of (2.6).

Thirdly, although constitutive parameters can be refined to match macroscopic experi-
mental data, it’s also not clear from literature reports if those constitutive parameters for the
same material work in other experimental configurations. Calibration of the plasticity model
(say, sα, γ̇0, m of (2.6)) is done according to one experiment, but frequently the resulting
parameters are not checked against other situations. The limited scope of experimentation
available is of course a general deficiency of most studies of material behavior, and is not an
objection at crystal plasticity per se. Therefore this is a general criticism that can be leveled
at most theories of material behavior. The point is that being of restricted phenomenology,
following Equation (2.5) may be less flexible than other phenomenological formulations.

Lastly, as in any plasticity theory, there is no overwhelming experimental evidence that
the theory of crystal plasticity describes experimental data, apart from achieving the un-
doubtedly important single slip limit. This is particularly true for modeling polycrystals
where the mechanics of individual grains is of interest. Although we showed that Taylor’s
experiments clearly support the notion of simple shear and slip, the material length scales at
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which this notion is a good one are not clear. Applying the Taylor hypothesis to single crys-
tal grains embedded in polycrystals has been shown experimentally to be possibly suspect
(Winther et al., 2004).

As noted in the introduction, plasticity experiments do not yet have the widely available
capability needed to fully investigate these questions, but there have been a few attempts.
For example, in a recent study by Kalidindi et al. (2004), finite element simulations of a
polycrystal were compared to X-ray diffraction data. Although the macroscopic texture pre-
dictions agreed with the data, the behavior of individual grains was not as positive. This
only underscores the motivation for having improved experimental techniques to critically
examine crystal plasticity models’ ability to capture physics in complicated loading situa-
tions.

The goal behind listing these objections is only that we should leave the door open to other
modeling frameworks until experiments can catch up to supporting the model development.
It is not to refute the viability of crystal plasticity, which is clearly a thoughtfully constructed
model which has attractive features and which has shown itself to be useful in applications.
In this current work we accept crystal plasticity models as the current gold standard. Our
goals are simply to offer a potentially viable alternative, by adopting a phenomenological
viewpoint with fewer assumptions from the start, and to see how far this vantage point takes
us.

2.1.4 Deficiencies of phenomenological modeling

Of course, phenomenological theories also have deficiencies which have been described in
the literature. To illuminate these, it is useful to explicitly record a discussion by Yang
and Lee (1993, section 2), where an excellent review of phenomenological plasticity theories
up to that time is given. Although the notion of a phenomenological plasticity theory for
single crystals (i.e. the present work) had not been considered in their review, they list some
limitations of what they call ‘macroscopic plasticity’. Macroscopic plasticity is interpreted
to be synonymous with phenomenological plasticity. The framework they promote is called
‘mesoplasticity’, which for the purposes of comparison can be understood as following the
hypotheses of slip-system based crystal plasticity. We list their issues with phenomenological
plasticity here, since they serve as useful points of discussion. Direct quotations from their
book are enclosed in ‘ ’.

From Yang and Lee (1993, p. 60): ‘At present moment [...] the painful practices [sic] on
displaying the major limitations of macroplasticity has to be exercised as follows:’

1. ‘Detached from actual plastic deformation mechanisms. The source of plastic deforma-
tion in a macroplasticity formulation is either assumed devoid of physical explanation
or observed phenomenologically through macroscopic data. In macroplasticity, plas-
tic deformation is defined by concept rather than through actual physical image. [...]
A related consequence of macroplasticity [...] is the lack of any direct (mechanical
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and experimental) means to detect current plastic deformation without the help of a
hypothetical (and sometimes unjustified) process of elastic unloading. ’

2. ‘Empirical assumptions on material responses. The basic practice in continuum me-
chanics approach relies on a priori, empirical assumptions for different material re-
sponses, under the help of the general guidelines deduced axiomatically from the basic
postulates and limited empirical testing data. Whereas a mesoplasticity analysis is
lined with detailed material specification and microstructural parameters of the mate-
rial system under consideration. The significance of this distinction is highlighted by
the ability (for mesoplasticity approach) or limited ability (for macroplasticity) to get
material insights into constitutive formulation.’

3. ‘ Ambiguities in the essential structures of macroscopic plasticity framework. Although
new results on the essential structures of plasticity formulation have been constantly
emerged [sic] from study on macroplasticity aspect, several vitally important issues
are still elusive and probably cannot be fully resolved from macroplasticity knowledge
alone. Those issues include the basic physical postulate which gives rise to the structure
of the flow rule, the selection of the co-rotational rate, the cause and evolution of
anisotropic hardening in accompany with material texture development, the resolution
(both physical and mathematical) of elastic and plastic deformation at large strain,
the geometry of yield surface especially the vertex formulation, etc.’

4. ‘Difficulties in the description of microstructural sensitive phenomena. Phenomena
such as phase transformation, flow localization, ductile fracture and material damage
are extremely sensitive to the microstructural details, especially the inhomogeneities
scattered inside the material systems. The homogeneous continuum devoid of any
internal structures is assumed as the corner stone in macroplasticity. However, it
would undoubtedly cause barriers in the characterization of microstructural sensitive
phenomena, rendering their accurate description intrinsically difficult if approached
from macroplasticity methodology alone.’

5. ‘Unable to handle applications of microplastic nature. [...] there are some practical ap-
plications which are intrinsically mesoplastic. Examples for these applications include
ultra-precision machining, texture control of superconductive alloys, surface finishing
improvement of mechanical processing, superplastic manufacturing, etc., not to men-
tion the applications related to the material failures. These applications are closely
related to the evolution of microstructures and the stress-strain history recorded by
individual grains’

We now respond, one by one, to these criticisms of phenomenological formulations of plas-
ticity with the current framework of anisotropic phenomenological plasticity in mind.
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1. This objection, while probably valid for polycrystalline plasticity theories where def-
initions of elastic and plastic strain are difficult to measure experimentally, does not
apply to the current study. In the next section, we will see that plastic deformation
here is defined by the time evolution from an initial state in space-time. The material
state can be measured using standard methods. Given a source of X-rays, the lattice
state can also be measured. Therefore we have direct experimental means to detect
plastic deformation since the theory relates the two through a multiplicative decom-
position like (2.7). It should be noted that Yang and Lee (1993) suggest that in the
crystal plasticity approach experimental capabilities for their target variables (such as
dislocation flow) are well established. This might be the case for certain quantities
like Fe, but if they are supposing their theory to be based on experimentally mea-
suring dislocation densities, this would require destructive evaluation of the material
and therefore cannot be used for direct validation of elastic-plastic deformation even in
the mesoplasticity case. At least in our model, we directly describe the experimental
program needed to investigate the theory.

2. This objection seems to suggest that phenomenological constitutive equations are not
adequate to serve as macroscopic predictors. I would again point to isotropic Hooke’s
law, which seems to have served engineers well for a long time. Their statement is
largely a manifestation of the fact that experimental plasticity of single crystals has
been historically inadequate for phenomenological models to develop detailed constitu-
tive equations; therefore it is supposed that focusing on smaller length scale phenomena
gives rise to better macroscopic constitutive behavior. We have yet to see irrefutable
evidence that microscale mechanics gives macroscopic predictions which can not be
reproduced with a phenomenological approach applied at the micro-scale. We must
keep in mind the type of information we are hoping to obtain from implementing our
theories in simulations for the purposes of solving engineering applications, which is
usually of a macroscopic nature. See Treloar (1974) for a related debate from another
field, rubber elasticity.

3. By using the anisotropy of the single crystal in constitutive equations, phenomeno-
logical parameters will naturally be demanded by the theory. These parameters have
the capability to model the features mentioned. Therefore this objection is really a
symptom of not attempting to apply anisotropic phenomenology to the mechanics of
single crystals.

4. We will see that the model presented here naturally leads to predictions of plastic local-
ization in plane strain tension. This comment is evident again, of the lack of attempt at
an anisotropic plasticity model. The comment may be true for isotropic/polycrystalline
plasticity, but it is not true for our model, at least for the question of strain localization.

5. Historically speaking, phenomenological models have had superior performance in
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terms of predicting macroscopic information: the force required to achieve a certain
level of deformation in a material processing plant is one example of were phenomeno-
logical approaches shine. These authors acknowledge this. But it’s not evident that
their cited applications have in fact benefited from mesoplasticity apart from qualita-
tive understanding and observation of certain phenomena. Again, no one has tried a
single crystal phenomenological approach, so it’s not fair to say that such a framework
cannot be useful for the analysis of these applications.

Summary. Setting argued benefits or deficiencies of differing approaches to plasticity aside,
review of the literature has indicated that there is room for a contribution of classical con-
tinuum mechanics phenomenology applied to single crystals. Crystal plasticity is a proven
framework, but experiments may potentially show that it has deficiencies which might be
better addressed with a flexible phenomenological approach. The lack of good constitutive
information required to implement a phenomenological model should not make such a theory
irrelevant to consider.

In the next section, we develop the phenomenological theory of plasticity which has been
referred to in these introductory sections. We then move on to describe philosophies of con-
stitutive behavior, and present numerical simulations. We also calibrate several proposed
constitutive models against crystal plasticity models reported in the literature; this being
the closest connection to experimental data we can find. Finally we give examples of imple-
menting the calibrated model into plane strain simulations, and report several qualitative
and quantitative observations from them. Throughout, we assume a certain familiarity with
standard mechanics formulations and mathematical manipulations.

2.2 Theoretical development

As stated in the introduction, plasticity is a phenomenon which has been studied for over
100 years but is one which still receives attention and suggested modeling frameworks. These
theories share many of the same basic ingredients. Commonalities include notions of elastic
and plastic strain, the specification of a plastic evolution equation (flow rule), the concept of
a yield function, and phenomenology to account for hardening.Ideally, each proposed theory
must be evaluated against data in order to provide a proven measure of the usefulness of the
model. However, quantitative experimental validation of plasticity models is prohibitively
difficult; in fact only recently has technology advanced to the degree where such studies can
realistically be attempted3(Winther et al., 2004; Kalidindi et al., 2004; Quey et al., 2010).
Therefore, these experimental obstacles have led to the current state of affairs in plastic-
ity, which we feel still has open questions with regard to settling on a modeling approach
which gives verified physical predictions. Until the experimental challenge is answered, these

3Reasons for this difficulty were noted in §1.2.
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questions will surely linger.
In this section we develop the theoretical framework for the proposed formulation of

plasticity of single crystals. An appealing characteristic of the theory is that it can be
quantitatively investigated using X-ray diffraction experiments, and, at this stage, does not
appeal to any so-called hidden or internal variables which are a hallmark of many theories of
plasticity including crystal plasticity (Rice, 1971; de Souza Neto et al., 2008). In Chapter 3
practical application of the experimental method is described in detail. The content of the
section is as follows. First, in §2.2.1 we define our decomposition of elastic plastic strain, and
describe how X-ray diffraction enables this decomposition to be measured experimentally.
Then in §2.2.2, a brief overview of the thermodynamic structure is given, along with the
equations of motion. In §2.2.3 the general constitutive problem is described.

Almost all of the content of this section is standard based on previous literature, for a
review see Gupta et al. (2007) and references therein. This development is required in order
to implement the numerical simulations, which represent the new material. Throughout the
section, a familiarity with notions of continuum mechanics is understood.

2.2.1 Definition of elastic and plastic strain

To begin, we describe in general how the mathematical description of elastic-plastic defor-
mation differs from the description of purely elastic bodies. It is useful to give a review of
classical elastic bodies in continuum mechanics in order to underscore how plasticity differs.

Review of elasticity. In elasticity material bodies are considered to be differentiable
manifolds, covered by a single coordinate chart. Material coordinates on the manifold are
denoted by X. The motion of the body is described by the function χ(X, t), which satisfies
differential equations representing the balance of forces, obtained from Newton’s laws. For
instance, the balance of linear momentum equation reads

ρ0
d2χ

dt2
= grad ·T+ ρb, (2.8)

where T is the (Cauchy) stress response of the material, ρ is the material density, t is the
time, and b is the body-force vector, representing gravitational forces for example, and grad
is the gradient operator in the spatial configuration. In elasticity theory, the stress response
of the material, T is given by constitutive functions T̂(F), where F = ∇χ(X, t) is called
the deformation gradient, where ∇ is the gradient operator in the reference configuration.
The balance of angular momentum equation requires that the Cauchy stress is symmetric,
T = TT. This requirement is typically incorporated in the constitutive specification of the
stress response T̂(F).

The principal unknown in elasticity theory is therefore the field χ(X, t) which completely
specifies the state of the body. In contrast, in plasticity theory the unknowns are the motion
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of the material, χ(X, t), along with a field representing plastic deformation. Here we denote
this field as K(X, t). Furthermore, the stress response is not a function of F, but instead a
function of elastic deformation. We denote this field as H(X, t). Since notions of elastic vs
plastic strain has been a historically contentious issue (Naghdi, 1990; Yang and Lee, 1993)
we spend some effort explicitly describing our formulation for this to avoid misinterpretation
of what we are advocating.

Geometric notion of elastic and plastic deformation

Much of the difficulty in defining elastic vs. plastic strain arises when the concept of a local
unloading process after straining is required to define the elastic strain, as noted in §2.1.4,
item 1. In this notion it is supposed that the unloading process removes any elastic strain
and the remaining strain is deemed plastic. The current proposed formulation does not
define elastic and plastic strain via an unloading process, but instead uses a geometrically
motivated definition that is supported experimentally by X-ray diffraction measurements. To
see this, first note that this formulation of elastic-plastic deformation is closely tied with the
beautiful director theory of Fox (1968). In that theory, along with the motion of the material
χ(X, t), Fox (1968) describes the motion of a microstructural component, characterized by
three linearly independent vectors, di, i = 1, 2, 3, which can rotate and distort relative to
the material itself, but carry no inertia. The stress response function is determined by the
rotation and distortion of these microstructural directors, T̂(d1,d2,d3).

To see why that theory is relevant to mention, recall that our model is meant to apply
to single crystals, which are characterized by a lattice of atoms. The description of a crystal
lattice requires knowledge of only three linearly independent lattice vectors, li, i = 1, 2, 3.
Furthermore, the distortion of the lattice is coupled to the stress response through constitu-
tive relations, T̂(l1, l2, l3). Therefore the lattice vectors (or their duals) play the role of the
directors in the theory of Fox (1968).

The directors are experimentally measurable for crystals, since the structure of single
crystals can be probed in detail using X-ray diffraction (Cullity, 1978). To explain, in X-ray
diffraction, the definition of lattice distortion comes from characterizing linear transforma-
tions from a fixed lattice configuration κ to the current configuration where the diffraction
measurement is made.4 The configuration κ is constructed based on an assigned reference
state of the lattice. Usually it can be thought of as a stress free configuration, since κ is
generated by unit cell parameters obtained from a powder sample under ambient conditions.
In such a case, the tensor H can be used in a normal interpretation of constitutive equations
for stress, e.g. T = T̂(H) and T̂(H = I) = 0. The physics of this measurement and further
details are developed in Chapter 3, for now it suffices to accept that such a measurement
is possible. This transformation is denoted by H, and this tensor defines what we call the

4In addition to the fixed lattice configuration κ, there is a material reference configuration which has the
normal definition from traditional elasticity. That is, the motion of the material, χ is defined over the points
of this material reference configuration, χ(X, t).
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lattice deformation. To relate this transformation to lattice vectors, H can be written in
terms of its action on the lattice vectors in the fixed lattice configuration, by

li ≡ HLi, (2.9)

where Li, i = 1, 2, 3 are the lattice vectors in the configuration κ, and li are the lattice
vectors in the physical configuration. Define the reciprocal lattice vectors by Li. These have
the basic property

Li · Lj = δji . (2.10)

By inspection of (2.10) and (2.9), H has the representation

H = li ⊗ Li, (2.11)

so that H is defined in terms of the lattice vectors Li and the transformed li.
Comparing this framework with the theory of Fox (1968), we see the same structure in

both cases - inertia-less directors (HLi) which determine the elastic response T̂(H). There-
fore, in this work, statements referring to (1) lattice vectors (2) directors (3) H, are all
synonymous through the construction used in developing (2.11). To summarize, the lat-
tice distortion H, or equivalently, the directors li are well defined quantities which can be
measured experimentally. Next the measurement of plastic strain is described.

In the context of crystal lattices, in the presence of plastic deformation the local lattice
deformation H evolves independently of the local material deformation F. Therefore the
field H(X, t) is not compatible with the overall motion, for instance H 6= ∇χ in general.
However the material deformation F = ∇χ is by definition compatible. Therefore the plastic
deformation K restores compatibility by the relation

F = HK−1. (2.12)

As a motivating illustration, consider Figure 2.6, which shows the construction of the ref-
erence lattice configuration κ, and subsequent mappings into the material reference config-
uration and physical configuration through K,H. In the figure the subscript κ is used to
emphasize the dependence of H,K on the construction of the fixed lattice configuration.

Consider Figure 2.6, which shows a reference cube with edges e1, e2, e3. Under a struc-
tural map Hs using the unit cell parameters a0, b0, c0, α0, β0, γ0, the configuration κ is defined
and fixed. Lattice vectors in κ are denoted Li. These reference lattice vectors can be thought
of as originating from the cube edges ei through the relationship, Li = Hseu. In the current
configuration, the lattice vectors are mapped to li = HLi, see the lower right of the figure.
The material vectors Gi are defined in the material reference configuration, in the lower left
of Figure 2.6. There is no explicit connection between Gi and Li. However, the material
vectors Gi may be conveniently defined based on the lattice vectors at the initial time, so
that Gi(X) = K(X, 0)Li. In the definition of Gi based on initial lattice vectors, it becomes
easy to see that a non-zero plastic deformation implies that the resulting lattice deformation
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differs from the material deformation, as indicated in the lower right image of Figure 2.6.
More is said on the construction of unit cells, the structural map, and the configuration κ
in §3.3.5.
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Figure 2.6: Illustration of elastic plastic deformation, resp. H,K making up total material
deformation, F. Constructing the reference configuration κ requires a structural map Hs,
which acts on a fictitious reference cube to generate the reference lattice configuration. More
details on this construction are provided in §3.3.5, see also (Edmiston et al., 2012). The red
lines track the mappings of lattice vectors Li in the fixed reference configuration κ, whose
construction is introduced later, in §3.3.5. The lattice vectors in the physical configuration
are denoted li.
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Dislocations

Materials science observations suggest that dislocations are fundamental to plasticity be-
havior. In the present framework, incompatibility in the H,K fields can be interpreted to
represent the geometrically necessary dislocation density in the crystal. For example, inte-
gration of the plastic deformation around a closed contour ∂Ω of the area Ω gives the net
Burgers vector of all dislocation lines passing through Ω,

d =

∫
∂Ω

K−1 · dX. (2.13)

We can rearrange this equation using Stokes’ theorem, written as∫
A

n · ∇ × v =

∫
l

v · dl, (2.14)

and substituting v = KTa, in (2.14) for a an arbitrary constant vector. After simplifications
we obtain the equivalent result

d =

∫
Ω

(CurlK−1)NdA, (2.15)

so that CurlK−1 is related to the dislocation content. Gupta et al. (2007) define what they
call the true dislocation content,

ξ = JKK
−1CurlK−1, (2.16)

which has convenient properties under changes of reference frame. We investigate the effect
of adding the dislocation measure ξ to constitutive functions in a subsequent section.

Summary remarks.

It is important to establish some limitations of this approach to describing plastic evolution.
With respect to applications, we determine the K field at an initial time t0. Time evolu-
tions of the plastic deformation, K, from this initial state can then be modeled effectively
in our given framework. The initial K-field can be calculated indirectly from X-ray diffrac-
tion measurements, which give direct measurements of H(X, t). To see this, in the initial
measurement state, per normal usage define the material reference configuration such that
F = I and so from (2.12), K0 = H0. This history dependence could only be overcome by
using an experimental technique and theory which can obtain the positions of all atoms in
the material. Such a technique is not available, and if it were continuum mechanics would be
relegated to ancient history. Until then, users of either this model or crystal plasticity must
understand that evolutions are what the model is predicting. In any case, this is sufficient
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for a most engineering applications. See Barton et al. (2011) for an example of the evolution
toward using atomic information in a continuum level simulation.

In the next section we develop the thermodynamic framework for this theory of elastic
plastic deformation, including balance laws and constitutive equations. Familiarity with
basic continuum mechanics is assumed, see (Liu, 2002) for a good modern treatment.

2.2.2 Thermodynamics and balance equations.

Continuum field theories define quantities of interest over differentiable manifolds which are
diffeomorphisms of a reference configuration of the material body. In the thermoelastoplastic
case, we seek the fields χ(X, t), θ(X, t),K(X, t), where θ(X, t) is the temperature field. The
other fields have been defined previously. We do not make explicit use of temperature in
this thesis, but, in following with standard presentations, retain it for this section. We now
derive the balance equations and thermodynamic restrictions for such a mathematical body.
Using the material reference configuration the equation of motion is (Liu, 2002)

ρ0χ̈ = DivP(F,K) + ρ0b, (2.17)

where χ̈ = χ,tt, ρ0 is the reference material density, Div is the divergence operator in the
material reference configuration, b is the body force, and P is the Piola stress in the material
reference configuration. P is given by a constitutive function of F,K. It is related to the
Cauchy stress, T, by

P = JTF−T, (2.18)

where J = detF. So far this is no different than elasticity, (2.8). The difference is that we
have a time evolution of the plastic deformation, described by a flow rule

K̇ = ˆ̇K(F,K), (2.19)

where, for now, we have used the same functional dependence in the flow rule as for the
Piola stress. This can be thought of as a result of the principle of equipresence, which states
we should at least have the same dependence in all constitutive functions unless precluded
by more fundamental information. Experimental evidence, while limited, appears to suggest
that equipresence is not a good practical assumption for plasticity, due to observations of rate
dependence and dislocation content, ξ, on plastic flow, which are not strongly manifested
in the elastic response. Incorporating these entities into the plastic flow rule (2.19) will be
considered later.

Next, we postulate the energy balance,∫
V

ρ0u̇dV =

∫
V

P · ∇χ̇dV +

∫
A

qdA+

∫
V

rdV, (2.20)
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where V is the material volume, A is the associated bounding area, u is the internal energy
function, q is the energy flux vector, and r is the volumetric energy generation. Using the
divergence theorems and localization gives the local form

ρ0u̇ = P · ∇χ̇−∇ · q+ ρ0r. (2.21)

Equation (2.21) is needed if the temperature field θ(X, t) is desired.

Coleman-Noll procedure. We now follow the classical Coleman-Noll procedure to re-
strict constitutive equations (Coleman and Noll, 1963; Coleman and Gurtin, 1967). The
second law of thermodynamics requires

d

dt

∫
V

ρηdV ≥ −
∫
A

1

θ
q · ndA+

∫
V

ρ0r

θ
dV, (2.22)

where η is the entropy, which localizes to

ρ0η̇ ≥ −∇ · q
θ
+
ρ0r

θ
. (2.23)

Multiplying (2.23) by θ gives

θρ0η̇ ≥ −∇ · q+
1

θ
q · ∇θ + ρ0r. (2.24)

Next, define the Helmholtz energy function Ψ by

Ψ = u− θη, (2.25)

so that
u = Ψ+ θη. (2.26)

Using (2.26) in (2.21) gives

ρ0(Ψ + θη) = ρ0(Ψ̇ + θ̇η + θη̇) = P · ∇χ̇−∇ · q+ ρ0r. (2.27)

Rearranging (2.27) gives

ρ0(Ψ̇− θ̇η)−P · ∇χ̇+∇ · q = ρ0θη̇. (2.28)

Implementing this in (2.24) gives

θρ0η̇ ≥ 1

θ
q · ∇θ + ρ0(Ψ̇ + θ̇η + θη̇)−P · ∇χ̇, (2.29)

or

0 >
1

θ
q · ∇θ + ρ0Ψ̇ + ρ0θ̇η −P · ∇χ̇. (2.30)
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For elastic-plastic bodies, the material energy function Ψ is assumed to be related to the
strain energy of the lattice configuration W (H) by

Ψ(F,K) =
1

JK
W (FK). (2.31)

The material energy rate Ψ̇ has the following chain rule representation in terms of the lattice
energy W : (taking derivative of (2.31))

Ψ̇ = − 1

JK
WK−T · K̇+

1

JK

(
∂W

∂F
· Ḟ+

∂W

∂K
· K̇+

∂W

∂θ
θ̇

)
. (2.32)

Substitution of (2.32) in (2.30) gives

0 ≥ 1

θ
q · ∇θ + ρ0

1

JK

(
−WK−T · K̇+

∂W

∂F
· Ḟ+

∂W

∂K
· K̇
)
+ ρ0

(
1

JK

∂W

∂θ
+ η

)
θ̇ −P · ∇χ̇.

(2.33)
Rearranging (2.12) gives

H = FK. (2.34)

Next, using (2.34) the partial derivatives in (2.33) are given by

∂W

∂F
· Ḟ =

∂W

∂H

∂H

∂F
· Ḟ =

∂W

∂H
KT · Ḟ (2.35)

and
∂W

∂K
· K̇ =

∂W

∂H

∂H

∂K
· K̇ = FT∂W

∂H
· K̇. (2.36)

Then using (2.35) and (2.36) in (2.33) we have

0 >
1

θ
q·∇θ+ρ0

(
1

JK

∂W

∂H
KT · Ḟ+

1

JK

(
FT∂W

∂H
−WK−T

)
· K̇
)
+ρ0

(
1

JK

∂W

∂θ
+ η

)
θ̇−P·∇χ̇.

(2.37)
Using ∇χ̇ ≡ Ḟ and rearranging gives

0 ≥ 1

θ
q ·∇θ+

(
ρ0

1

JK

∂W

∂H
KT −P

)
·Ḟ+ρ0

1

JK

(
FT∂W

∂H
−WK−T

)
·K̇+ρ0

(
1

JK

∂W

∂θ
+ η

)
θ̇.

(2.38)
Assuming no temperature gradients, and taking arbitrary independent variations of the
kinematic fields Ḟ, K̇, θ̇ shows that (2.38) requires

P =
1

JK
PHK

T, (2.39)

where

PH ≡ ∂W

∂H
(2.40)
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is the Piola stress in the fixed reference lattice configuration. The stress measure P in (2.39)
can also be obtained by matching Cauchy stresses in the current configuration, so that

1

J
PFT =

1

JH
PHH

T, (2.41)

and solving (2.41) for P gives (2.39). We also will see that

PH =
JH
J

PK−T = JKPK−T. (2.42)

Similarly, the entropy is given by

η = − 1

JK

∂W

∂θ
. (2.43)

Next we examine the plastic evolution, K̇. Rearranging the conjugate stress to K̇ in (2.38),
we have the condition

0 ≥
(
FTP− 1

JK
W I

)
K−T · K̇, (2.44)

where we have used (2.42). Rearranging (2.44), we have the requirement(
1

JK
W I− FTP

)
· K̇K−1 ≥ 0, (2.45)

which represents positive dissipation due to plastic flow. In (2.45), the quantity in parenthesis
is the Eshelby stress, defined by

E = Ψ(F,K)I− FTP. (2.46)

where we have used (2.31) in obtaining (2.46).
In summary the second law of thermodynamics through the Coleman Noll procedure

shows that the dissipation, D is positive,

D = E · K̇K−1 ≥ 0. (2.47)

Another form of the dissipation based on (2.46) is useful to expose the intrinsic sources of
the phenomena. Define

E ′ = W I−HTPH (2.48)

as the Eshelby stress in the lattice configuration, so that we can rewrite (2.47) as

D =
1

JK
K−TE ′KT · K̇K−1 ≥ 0 (2.49)

=
1

JK
E ′ ·K−1K̇ ≥ 0. (2.50)

We now examine (2.50) to get an intuitive picture of what the dissipation equation indicates
physically.
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Physical interpretation of dissipation inequality. This section provides a physical
interpretation of the dissipation inequality (2.50) in the form

E ′ ·K−1K̇ ≥ 0. (2.51)

Recall that the decomposition of elastic and plastic deformation is given by

F = HK−1. (2.52)

In recognition of experimental facts we regard the primitive quantities to be F and H, in
that F is derived from the motion of the material relative to the assigned material refer-
ence configuration, and H tracks the evolution of lattice vectors (measurable from X-ray
data). Using convected coordinates (material coordinates), any linear transformation from
a material reference configuration to a material deformed configuration is specified by the
deformation of three material tangent vectors, Gi, i = 1, 2, 3, in the reference configuration
to the current configuration, gi ≡ FGi. Using this with the property Gi ·Gj = δji gives the
representation

F = gi ⊗Gi, (2.53)

where Gi are the material reciprocal vectors. Similarly, we have

H = li ⊗ Li, (2.54)

where Li is a reference reciprocal lattice vector in the crystal, and li is a lattice vector in the
physical configuration. From (2.53) we have

F−1 = Gi ⊗ gi (2.55)

by inspection. Next, from K = F−1H, we compute

K =
(
Gi ⊗ gi

) (
lj ⊗ Lj

)
=
(
gi · lj

)
Gi ⊗ Lj. (2.56)

Then, define
rj =

(
gi · lj

)
Gi. (2.57)

so that (2.56) becomes
K = ri ⊗ Li. (2.58)

This leads to
K̇ = ṙi ⊗ Li (2.59)

and
K−1 = Lj ⊗ rj, (2.60)
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so that
K−1K̇ =

(
rj · ṙi

)
Lj ⊗ Li. (2.61)

To simplify things, considering the first instant of plastic flow, where say l̇j = 0, ġj 6= 0.
Therefore

ṙj =
˙

(gi · lj)Gi =
(
ġi · lj

)
Gi. (2.62)

To continue from this result, the reciprocal material vectors gi are not convenient for inter-
pretation. Instead, we would like to use the direct material vectors, gi, since these have a
more intuitive behavior under deformations (e.g. they grow in size and rotate along with
deformation). Then, we have the results

0 = δ̇ij =
˙

(gi · gj) = ġi · gj + gi · ġj =⇒ ġi · gj = −gi · ġj. (2.63)

Resolving ġi on the reciprocal material basis gives

ġj =
(
ġj · gi

)
gi. (2.64)

Then using (2.63) in (2.64) gives

ġj = (−ġi · gj)gi. (2.65)

Substitution of (2.65) into (2.62) gives

ṙk = (−ġi · gj)
(
gi · lk

)
Gj. (2.66)

Taking K−1 = H−1F gives

K−1 = (Lj ⊗ lj)(gi ⊗Gi) (2.67)

= (lj · gi)Lj ⊗Gi, (2.68)

so that by comparing with (2.60) we see that

rj = (lj · gi)G
i. (2.69)

Then using (2.69) and (2.66) in (2.61) we have

rl · ṙk = (ll · gm)(G
m ·Gj)(−ġi · gj)

(
gi · lk

)
(2.70)

= −(ll · gj)(ġi · gj)
(
gi · lk

)
(2.71)

= −(ġi ⊗ ll) · (gj ⊗ gj)
(
gi · lk

)
(2.72)

= −(ġi · ll)
(
gi · lk

)
. (2.73)
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Next we consider the stress. Using (2.48), (2.54), and PH = PHI = PHL
i ⊗ Li the Mandel

component of the Eshelby stress is expressed as

HTPH = (Li ⊗ Lm)(li ·PHL
m). (2.74)

Use of (2.74) and (2.61) in the dissipation term (2.51) gives

HTPH ·K−1K̇ = (rj · ṙi)(lj ·PHL
i) (2.75)

= −(ġm · lj) (gm · li) (lj ·PHL
i) (2.76)

= −(PHL
i ⊗ ġm) · (lj ⊗ lj)(gm · li) (2.77)

= −(PHL
i · ġm)(g

m · li). (2.78)

Finally, let the reference material vectors Gi be defined by the images of the lattice vectors
under the plastic deformation field K, so that Gi = KLi. Standard kinematic relations also
give

Gm = K−TLm (2.79)

and

gm = F−TGm (2.80)

= F−TK−TLm. (2.81)

Then with li = HLi = FKLi we have

gm · li = (F−TK−TLm) · (FKLi)

= Lm · Li

= δmi , (2.82)

and substitution of (2.82) into (2.78) gives

D = −HTPH ·K−1K̇ (2.83)

= (PHL
i · ġi) ≥ 0. (2.84)

Equation (2.84) has a nice physical interpretation. Note that PHL
j is the resolved stress on

the Lj plane in the lattice reference configuration (Lj is the crystallographic plane normal).
The positivity of dissipation in Equation (2.84) states that the resolved traction vector PHL

i,
and the direction of instantaneous material motion ġi, during plastic flow, must not be in
opposite directions. By the construction of the Gi using Gi = KLi, this relation holds for
any value of plastic deformation K.

This section should not be thought of as a fanciful exercise in vector operations. The
notion of plastic flow as the independant evolution of the material configuration with respect
to the lattice configuration, used in motivating (2.62), is used in §3.5 for the determination
of constitutive equations for yield from X-ray diffraction experiments. Next we consider the
constitutive functions requested by the theory developed so far.
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2.2.3 Constitutive development: general considerations

The formulation of plasticity thus far presented is general; no constitutive equations have
been introduced, so no predictions of material behavior can be made. This is the point
at which earlier incarnations of the theory have stopped (Fox, 1968; Naghdi and Srinivasa,
1993a,b; Gupta et al., 2011). In this section we develop a constitutive theory to complete
the modeling framework. This will enable us to examine numerical predictions of the theory
which is presented in §2.4. The minimum requirements for the constitutive theory are that

we need (1) the strain energy function W (H) and (2) the flow rule ˆ̇K(H). In this section we
will also introduce a yield function, y(H), which, with the maximum dissipation postulate,
gives an appealing mathematical structure in which to model rate independent plasticity.
We can modify the rate independent theory slightly to allow for rate dependence, and then
describe the rate independent theory as the limit of the rate dependent theory as the plastic
flow viscosity tends to 0+.

For each of the required constitutive quantities, we will first consider only general consid-
erations, primarily the core requirements of material symmetry and observer invariance. We
then introduce the maximum dissipation postulate and rate independent flow rule. Next,
additional conditions on constitutive relations motivated from experimental observations will
also be given. Then, in the next section, we will describe the general specific representation
problem, and carry out the calculations for crystals of engineering interest.

2.2.3.1 Strain energy function

We require the specification of a strain energy function to determine the elastic stress (2.39)
and complete the equation of motion (2.17). In the current formulation, we see no reason to
adopt entities such as geometrically necessary dislocations into the strain energy function,
as some authors propose (Kuroda and Tvergaard, 2008). Therefore in this model there is
nothing different from the strain energy functions of standard elasticity. We employ strain
energy functions of the form

W (H) =
1

2
CijklEijEkl + ..., (2.85)

where Eij = E · ei ⊗ ej, E ≡ (1/2)(HTH − I), and Cijkl are the elastic constants. The
reduced form W (H) = W (E) comes from the requirement of observer invariance. For any
Q ∈ O(3,R) we must have W (H) = W (QH). Therefore taking Q = RT where H = RU
is the polar decomposition gives that W (H) = W (U) = W (C) = W (E). where C = HTH
is the lattice metric. The function (2.85) can be expanded in an arbitrary number of terms,
with an associated increased experimental cost. Truncating at quadratic order in strain as
depicted in (2.85) gives the familiar linear elastic stress response,

Sij = CijklEkl, (2.86)
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where Sij = S · ei ⊗ ej and S = H−1PH is the second Piola Kirchoff stress in the lattice
configuration. It should be noted that other proposed strain energies can be employed for
crystals, see Schroeder et al. (2008); Ebbing (2010); Schroeder et al. (2010) for some recent
examples.

2.2.3.2 Flow rule

In (2.19) we require the specification of the evolution of the plastic deformation, the K-field.
For reasons of the thermodynamic interpretation of Equation (2.50) it will be convenient to
write the constitutive function for plastic flow in the form

K−1K̇ = Lp(F,K). (2.87)

where Lp is called the plastic velocity gradient. We expect plastic flow to occur due to
intrinsic lattice distortion, so we collapse the functional dependence to simply

K−1K̇ = Lp(H). (2.88)

Using the basic formulation of (2.88), invariance under change of physical observer then
requires that we have

K−1K̇ = Lp(H) = Lp(QH) ∀Q ∈ O(3,R). (2.89)

To see this, note that the plastic velocity gradient is invariant under change of observer

by the construction of K, so that K+ = K and K̇
+

= K̇. These taken together give
(K−1K̇)+ = K−1K̇. Next in (2.89) take the particular choice Q = RT, where H = RU is
the polar decomposition of H. This shows that we must have the reduced form

K−1K̇ = Lp(U) = Lp(C) = Lp(E). (2.90)

In the rest of this section, each of the kinematic quantitiesU,C,E as defined here can be used
as arguments in the plastic flow function, Lp, and we do not assign any special interpretation
to any of them due to the bijections between them. Furthermore, under the assumption of
small elastic strains, the second Piola Kirchoff stress is given by S = C[E], where C : sym →
sym are the elastic moduli, with representation C = Cijklei⊗ej ⊗ek⊗el. This is a bijective
relation since the moduli are invertible for convex strain energies, a characteristic which can
be imbued to the value of the constants Cijkl of (2.85). Using the bijection between S and
E we can also use flow rules of the form Lp(S). In the rest of the section we use the symbol
C, but again, either of U,E, or S for the small elastic strain formulation can be substituted.

Rate independent flow function. A classically considered problem in phenomenological
plasticity is the rate independent limit, which effectively means that the material’s plastic
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response is instantaneous. In this limit, we must have the flow function invariant under
change in time scale, so that under t→ λt we have

K−1K̇ = Lp(C, Ċ) → λK−1K̇ = Lp(C, λĊ) =⇒ Lp(C, λĊ) = λLp(C, Ċ). (2.91)

Therefore for rate independence, Lp(C, Ċ) is linear in Ċ. The constitutive function for
plastic flow can then be written as

Lp(C, Ċ) = Γ(C) · Ċ. (2.92)

for a fourth order tensor Γ(C) : sym → R9. Thus far we have considered the restrictions
due to observer invariance and rate independence. Next we consider the effect of material
symmetry.

Material symmetry restrictions Denote the symmetry group of the material by gκ.
Coarsely speaking, gκ is a collection of elements of O(3,R), whose operation does not affect
constitutive functions. For the flow rule, invariance under the symmetry group of the material
gives the necessary conditions

Lp(Q(i)CQT
(i),Q(i)ĊQT

(i)) = Q(i)Lp(C, Ċ)QT
(i) ∀Q(i) ∈ gκ. (2.93)

Here we have used K− = QK and K̇
−

= QK̇. Q̇ = 0 since Q is a fixed element of the
symmetry group in this analysis. Note that these transformations differ from those in (2.90),
since the rotations Q(i) operate on the lattice configuration, not the spatial configuration as
for the change of observer.

The hypotheses we have accepted to this point can get us no further in suggesting a form
for Lp(C, Ċ). Any constitutive function which satisfies the necessary conditions of material
symmetry (2.93) is admissible in this framework; experimental data is required to inform a
particular functional form. With this in mind, one approach which is certainly admissible
under the given framework is to simply consider polynomial functions

Lp(C, (̇C))ij = (DijklmnCmn +D′
ijklmnopCmnCop + ...)Ċkl (2.94)

for the rate independent formulation, where the arrays Dijklmn, D
′
ijklmnop represent material

constants which have appropriate symmetries. We could also have

Lp(C)ij = EijmnCmn + E ′
ijmnopCmnCop + ... (2.95)

where Eijmn, E
′
ijmnop are material constants with dimensions of [t]−1, where [t] are time

units, for an alternative approach which is not rate independent. In recognition of similar
constitutive formulations in the historical development of elasticity, the equations (2.94)
and (2.95) might be considered ‘hypoplastic’ constitutive functions, since we have not made
appeal to any notion of a flow potential. See Xiao et al. (2006, p. 21) for critical comments
on flow functions of the form (2.94), (2.95).
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2.2.3.2.1 Yield function, maximum dissipation. A primitive observation of the
behavior of crystals under load is that below a certain level of lattice distortion, the material
returns to its original configuration upon unloading, with no plastic flow. The region in stress
or strain coordinates where no plastic flow occurs is called the elastic region or elastic range
in the literature. It makes physical sense, then, to conceive of a material function which
delineates between elastic and plastic behavior. Therefore, introduce the yield function,
y(C), which is designed to induce the basic property

y(C) ≤ 0 =⇒ Lp(C) = 0

y(C) > 0 =⇒ Lp(C) 6= 0.

That is, below some level of critical lattice distortion, there is no plastic flow. Going back to
the text after (2.2), recall that this notion is encoded in the critical shear stress level needed
to move a dislocation. Constitutively, the yield function may be a scalar valued function
of the lattice distortion measure, e.g. y = y(C). Other functional dependencies can be
incorporated into the yield function, such as the dislocation density, ξ.

We may propose simple polynomials to describe y as done for the flow rule. However,
here we introduce an additional feature, that the function be an even function of lattice
distortion such that y(C) = y(−C), (Hill, 1950). That is, in the polynomial representation,
we’d have expansions of the form

y(C) = CijklCijCkl + C ′′
ijklmnopCijCklCmnCop + ... (2.96)

for constants Cijkl, C
′′
ijklmnop. This requirement is due to experimental observations that

yield stresses in tension and compression are usually of equal magnitude. If materials are
studies which do not exhibit this behavior, the requirement can be relaxed. The constants
Cijkl, C

′′
ijklmnop satisfy the necessary conditions for material symmetry, written as

y(C) = y(Q(i)CQT
(i)) ∀Q(i) ∈ gκ. (2.97)

The yield concept can be incorporated into the flow rules developed thus far by postu-
lating flow functions of the form

Lp(C) =

{
γ(C)f(C) if y(C) > 0

0, if y(C) ≤ 0
(2.98)

for a flow function f : sym → Lin, and where γ : sym → R+ may embed effects of material
viscosity in the flow rate, for instance. Note that the structure of (2.98) is similar to the
overstress models of Perzyna (1966); Nath (1998), typically used with isotropic material
models.
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Eshelby stress formulation. Finally, in recognition of the role of the Eshelby stress as
the work conjugate quantity to plastic flow from (2.47), it seems reasonable to postulate that
the flow rule be of the form

K−1K̇ = Lp(E ′) = Lp(E ′
S, E ′

Ω), (2.99)

where E ′
S = sym E ′ and E ′

Ω = skw E ′. Based on (2.99), invariance requirements are automat-
ically satisfied by the intrinsic nature of E ′. That is,

E ′+ =
1

J+
K

(
W+(C)I+ − (H+)TP+

H

)
=

1

JK

(
W (C)I−HTPH

)
= E ′. (2.100)

Similarly, in this framework it is reasonable to postulate that the yield function be formed
directly over the Eshelby stress space, so that

y(E ′) ≤ 0 =⇒ Lp(E ′) = 0

y(E ′) > 0 =⇒ Lp(E ′) 6= 0.

Next, we refine the hypoplastic flow rules in (2.94),(2.95) by taking advantage of the yield
function along with the maximum dissipation postulate.

Maximum dissipation postulate Not satisfied with the arbitrariness of the flow rules
(2.94),(2.95), we now improve the situation to a degree. The principle of maximum dissipa-
tion is a widely used constitutive hypothesis in modern continuum plasticity. The postulate
follows from Drucker’s postulate, or the weaker version, Ilyushin’s postulate (Gupta et al.,
2011).

In isotropic plasticity, the maximum dissipation postulate requires only the scalar valued
yield function y be specified; the flow rule Lp is then given by appropriate derivatives of the
yield function. This capability clearly simplifies the constitutive description of the plastic flow
process, since we need only consider a scalar function rather than a arbitrary tensor function.
However the current model is constructed with recognition that the lattice deformation H
is directly measurable from X-ray diffraction experiments. We will see that the classical
version of the maximum dissipation postulate is not sufficient to describe the behavior of the
materials we are trying to model, and we require an extra constitutive relation to capture
lattice reorientation (Lubliner, 1986). We now work out the details.

Given the following: (1) an elastic-plastic body, with (2) a strain energy function, W ,
and (3) a yield function y, we can solve for the form of the flow rule satisfying the principle
of maximum dissipation. The dissipation D is given by (2.50), see also Gupta et al. (2007,
2011)

D = E ′ ·K−1K̇, (2.101)

where E ′ = J−1
K KTEK−T, is the Eshelby stress in the fixed lattice configuration, and E =

W I−FTPF is the Eshelby stress in the material reference configuration. The Eshelby stress
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in the fixed lattice configuration may then be written as

JKE ′ =W I−HTPH =W I−CS. (2.102)

The implementation of the maximum dissipation postulate is phrased as an optimization
problem on the permissible states of stress: The energy dissipation D, (2.101) is maximized,
subject to the constraints y(E ′) ≤ 0. That is, that the elastic stress is at or below the yield
surface. Additionally, we have equality constraints on the stress state, E ′C ∈ sym. The
optimization problem is then written as

maximize D
subject to the inequality constraints y(E ′) ≤ 0
and the equality constraints E ′C ∈ sym.

(2.103)

We can then solve for the form of the flow rule once and for all by satisfying the Kuhn
Tucker conditions of the optimization problem (2.103), see Greig (1980). The Kuhn-Tucker
conditions applied to (2.103) then give (Steigmann and Gupta, 2011)

K−1K̇ = λ
∂y

∂E ′ +ΩC, (2.104)

where λ ≥ 0 is a Lagrange multiplier associated with the inequality constraint and Ω ∈ skw
are Lagrange multipliers associated with the equality constraint. The Lagrange multipliers
Ω appear from taking the equality constraint in the form

E ′C ∈ sym =⇒ skw E ′C = 0. (2.105)

For an arbitrary A, (skw A)ij = εikjak, for ak the axial vector of skw A, and so ak =
(1/2)εikj(skw A)ij. The Kuhn-Tucker conditions for the optimal solution to the system
(2.103) require calculation of

∂µkεikjE ′
imCmj

∂E ′
rp

= µkεikjδ
i
rδ

m
p Cmj = µkεrkjCpj = 2Ω′

rjCpj, (2.106)

where µi are the Lagrange multipliers associated with the three constraint equations

〈skw E ′C〉 = 0,

and 2〈Ω′〉 = µkek. Here 〈·〉 denotes the map from skew tensors to axial vectors, see (A.16),
(A.17). Finally, redefining (2.106) through Ω = 2Ω′ gives the result (2.104).

Small elastic strain. We now consider the small elastic strain reduction of the flow rule
(2.104). That is, strains at which linear elasticity is thought to be valid. To order O(E) we
have the Eshelby stress as

E ′ = W I−CS ≈ −S. (2.107)
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The yield function y(E ′) is then expressed as a function of the symmetric Piola Kirchoff
stress,

y = y(S). (2.108)

The maximum dissipation postulate with the constraints y(S) ≤ 0 and S = ST gives the
flow rule (2.104) as

K−1K̇ = −λ∂y
∂S

+Ω. (2.109)

Furthermore, rate independence requires that the flow rule be linear in Ṡ, (Gupta et al.,
2007), so that we consider flow rules (2.109) of the form

K−1K̇ = −λ∂y
∂S

+Ω(S, Ṡ), (2.110)

where the spin Ω(S, Ṡ) is linear in Ṡ (see (2.92)). In a later section, we also use flow functions
of the form

K−1K̇ = −λ
(
∂y

∂S
+Ω(S)

)
. (2.111)

As a final point, in the small strain limit, the dissipation (2.50) is written

D = K−1K̇ · −S = λ
∂y

∂S
· S ≥ 0, (2.112)

since the inner-product with S ∈ sym eliminates the contribution from the spin. Regarding
S as coordinates of a six-dimensional space, this inequality implies that the yield function
y(S) is a convex function. Therefore convexity of the yield function will be another important
property which the theory implies. Convex yield functions have a rich literature in the sheet
metal community (Soare and Barlat, 2010). We describe the imposition of convexity into y
for cubic crystals later in this chapter, and again for hexagonal crystals in §3.5.1.2.

This completes the treatment of the theoretical implications on the constitutive frame-
work. We now consider aspects which should be taken into consideration based on experi-
mental observations.

2.2.3.3 Additional observations from experimental plasticity

We began this section with the simplest complete constitutive formulation for elastic plastic
bodies: a strain energy function and a flow rule. We refined these results by deriving a rate
independent flow rule. We then introduced the yield function concept, and incorporated
it into flow functions of the over stress/Perzyna type. Accepting the maximum dissipation
postulate gave us further use from the yield function, although we were not able to completely
characterize the plastic flow from the consequences of the postulate (Lubliner, 1986) since
lattice reorientation is a fundamental experimental observable. The functional forms for
the constitutive relations are basic polynomial expansions consistent with the point group
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symmetry of the material. We have only required that the yield function be an even function
of the distortion, (2.96).

As noted several times previously, conclusive experimental observations of plasticity have
been historically elusive (Bell and Green, 1967). Nevertheless, we now consider further
refinements to the constitutive framework developed thus far, by considering what is known
to be observed from what experiments are available. Incorporating these observations into
the constitutive functions will make the theory of greater practical use.

Lattice reorientation - requirement for plastic spin The basic experimental obser-
vation which motivates the inclusion of the spin is that the lattice of a single crystal, pulled
in uniaxial tension, rotates, while the material does not. Equivalently, the lattice of a single
crystal in simple shear on a slip plane, does not rotate, while the material does. In crystal
plasticity, the reorientation effect comes out naturally from the assumed form of the flow
rule

Ḟp(Fp)−1 =
∑
α

γ̇αsα0 ⊗ nα
0 . (2.113)

The skew part of (2.113) is naturally nonzero, in general, by the presumed form of the plastic
flow function on slip dyads sα0 ⊗ nα

0 . Directly computing, we have

Wp = skw Ḟp(Fp)−1 =
∑
α

γ̇α(sα0 ⊗ nα
0 − nα

0 ⊗ sα0 ). (2.114)

In a precursor to this work, Gupta et al. (2007) construct a model of plasticity which defines
K so that the plastic flow K−1K̇ is restricted to be symmetric. However with this restriction
H loses its interpretation in terms of the transformation of lattice vectors from a fixed
reference state, as in Figure 2.6. This removes the ability of X-ray diffraction experiments
to be used to evaluate the predictions of the theory, since in uniaxial extension there would
be no lattice rotation predicted by such a theory, apart from elastic rotations which would
be small. To see this, consider the symmetric axial material deformation

F(s) = se1 ⊗ e1 +
1√
s
(e2 ⊗ e2 + e3 ⊗ e3), (2.115)

where s ∈ R+ is the extension parameter. This implies that ḞF−1 ∈ sym . Using the

decomposition F = HK−1 and K−1K̇ = −K̇
−1
K we have

ḞF−1 = ḢH−1 −HK−1K̇H−1. (2.116)

To cut through this equation, consider large plastic strains, so that ‖K−1‖ > ‖H‖. Then
H ≈ R, where H = RU is the polar decomposition of H. With this, (2.116) becomes

ḞF−1 = ṘR−1 −RK−1K̇R−1. (2.117)
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Next, recall that ṘR−1 ∈ skw , since R ∈ O(3,R). Taking the skew part of (2.117), for the
extension (2.115) gives

skw ḞF−1 = 0 = ṘR−1 − skw (RK−1K̇R−1). (2.118)

But, skw (RK−1K̇R−1) = RK−1K̇R−1 −R−TK−1K̇
T
RT . Therefore

skw (RK−1K̇R−1) = R(skw K−1K̇)R−1.

Substituting this in Equation (2.118) shows that for axial material deformations,

ṘR−1 = R(skw K−1K̇)R−1. (2.119)

Now, ifK−1K̇ ∈ sym as supposed in Gupta et al. (2007), then (2.119) indicates that ṘR−1 =
0, hence Ṙ = 0, and there is no lattice reorientation due to plastic flow. Therefore in the
present theory we cannot make the supposition K−1K̇ ∈ sym . This discussion is necessary
to include since this present theory closely resembles that in Gupta et al. (2007), however this
proves the model presented here is clearly distinct. From another perspective, the spin factor
Ω is a necessary ingredient of the theory in order to utilize the experimental method coupled
to the theory, X-ray diffraction. Should further justification be needed, in the previous
section we showed that a non zero spin is permissible under thermodynamic restrictions of
the maximum dissipation postulate. Hence there is no thermodynamic reason why a spin
should not exist, although we find the argument based on experimental observations more
convincing to appeal to.

Next, we consider another experimentally observed phenomena which crystal plasticity
encodes naturally but which we must consider as a separate hypothesis: lattice spin reversal
under load reversal.

Lattice reorientation reversal Consider the spin to be written as a function of a single
argument, say

Ω = Ω(S). (2.120)

If the spin were of even order in S, then the lattice reorientation would not change directions
upon reversal of the load, S → −S. For example consider tension and compression exper-
iments on single crystals. Note that this reorientation reversal is naturally encoded in the
crystal plasticity model (2.5), (2.6), through the use of γ̇α ∝ sign(τ). In terms of polynomial
expansions, we therefore require Ω to be an odd function of S. It is not clear how lattice
reorientation reversal would be encoded a priori in the rate independent functions of the
form Ω = Ω(S, Ṡ). This is a critical point to highlight, and makes such constitutive for-
mulations based on bilinear dependence on the stress or strain-rate dubious in our opinion.
Although such a formulation may capture data in certain scenarios, there could also be some
non-physical predictions in different experimental situations. That is, if the constitutive law
is calibrated in one test, it may not give acceptable predictions in a second experimental
test. In summary, we have much more confidence in predictions based on (2.120) than on
Ω = Ω(S, Ṡ), although both cases are investigated in a later section.
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2.3 Constitutive functions: detail

Thus far, we have developed the theory behind the current model of elastic-plastic deforma-
tion of single crystals and given an outline of the proposed constitutive framework. In this
section we develop the precise constitutive equations required to complete the model, and
make numerical predictions. We focus on the version of constitutive model for plastic flow
which makes use of the maximum dissipation postulate. To review, the entities we require
are

1. W (E), the strain energy function

2. y(E) or y(E ′), the yield function

3. Ω(S), Ω(S, Ṡ) or Ω(E ′, Ė ′), the lattice spin

We will also consider the effect of incorporating geometrically necessary dislocations ξ, in
(2.16). Therefore, we also would like to determine

2a. y(E, ξ) or y(E ′, ξ)

3a. Ω(S, Ṡ, ξ) or Ω(E ′, Ė ′, ξ)

First, some preliminary comments on the generation of phenomenological constitutive
equations respecting material symmetry requirements. For constitutive functions of one
variable, it is straightforward to compute the representation problem by a variety of meth-
ods (Green and Adkins, 1970; Liu, 1982; Zheng, 1994). However for functions of several
variables and higher order polynomials, it gets more complicated, (Xiao, 1996). Each of
these techniques for the representation problem can be thought of as reporting a functional
basis for the constitutive equation. For an idea, isotropic materials (e.g. no material symme-
try requirements) would have the smallest functional basis, while highly anisotropic crystals
would have a larger basis. According to a given material symmetry, the smallest integrity
basis is desired. Rigorously showing a particular functional basis is the smallest representa-
tion is difficult, especially for multiple tensor argument, no matter which method in Green
and Adkins (1970); Liu (1982); Zheng (1994) is used.

Although generating constitutive functions using any representation procedure is some-
what of a crank-turning procedure, it is not really a process which can be automated. For
example, detecting redundant basis element using symbolic tools like Mathematica is not
straight-forward. In this section we examine the use of both method: anisotropic structural
tensors and integrity bases for polynomial functions. We generate several of the constitutive
functions enumerated in the above list. We focus on cubic symmetry, this being an example
of a symmetry which is both difficult to generate reduced constitutive functions for, as well
as being relevant to the target application of the theory. Furthermore, cubic crystals are
common in structural metals of interest (Fe(BCC), Al(FCC), Cu(FCC)).
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We now consider many of the functions we are required to compute in order to com-
plete the model. In Table 2.1, we list the functional expansions we require for the theory
of §2.2. Here A,B,C represent arbitrary symmetric second order tensors, and v,w,u, t
represent axial vectors of skew symmetric tensors. Note that for functions incorporating
arbitrary second order tensors, such as E ′, ξ, in the representation formula the symmetric
and skew-symmetric factors are split off and handled independently. For example, for a
scalar function, f , depending on the geometrically necessary dislocation content, we have
f(ξ) = f(sym ξ, skw ξ) = f(A,v), where A ≡ sym ξ and v ≡ 〈skw ξ〉. Note that in this
study, only the first three function classes in Table 2.1 will be examined in detail.

Table 2.1: Constitutive equations required for phenomenological plasticity. These functions
must be constructed to be invariant under the point group symmetry of the material.

Scalar valued function → Target constitutive entity
F (A) → W (E), y(E)
F (A,v) → Ω(S), y(E ′)

F (A,B,v) → Ω(S, Ṡ), y(E, ξ)
F (A,B,v,w) → y(E ′, ξ)

F (A,B,v,w,u) → Ω(E ′, Ė ′)

F (A,B,C,v,w) → Ω(S, Ṡ, ξ)

F (A,B,C,v,w,u, t) → Ω(E ′, Ė ′, ξ)

2.3.1 Structural tensor methods

In the continuum mechanics literature, constitutive representation theory is typically con-
cerned at its core with the representation of isotropic functions (Spencer, 1971), that is,
functions for which

Q ∗ f(A) = f(Q ∗A) ∀Q ∈ O(3,R), (2.121)

where * is an operator to denote the rotation operation on arbitrary tensor quantities. This
notation is also used in the representation literature (Zheng, 1994; Xiao, 1996). As an
example, for a second order tensor T, Q ∗ T ≡ QTQT. For a given constitutive function
f(A), it has been shown (Liu, 1982) that by adding a functional dependence on tensors which
characterize the anisotropy, in the sense that they are invariant under action of elements
of the symmetry group, that an isotropic function of the original agencies along with the
structural tensor has the desired functional properties (Zheng, 1994). Therefore, by using
structural tensors, classical results from isotropic function representations (Spencer, 1971)
can be applied to anisotropic materials. For background literature on the structural tensor
approach, see Liu (1982); Zheng (1994); Xiao (1996).
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The structural tensor method works brilliantly for material symmetries commonly en-
countered in applications of non-linear elasticity. For example composites or biological ma-
terials are often treated assuming transversely isotropic symmetry or orthotropic symmetry.
For crystals, the method also works well for low symmetry materials, such as monoclinic. But
for higher symmetry materials, such as cubic or hexagonal, higher order structural tensors
(fourth order for cubics, sixth order for hexagonals) need to be incorporated. Generation
methods then create an assortment of complete yet redundant function basis elements (Xiao,
1996), from which it can be difficult to decipher the complete basis. For simple constitutive
functions like the strain energy function, the structural tensor approach is manageable for
crystals, but we would like to be able to consider functions with multiple tensorial arguments.
Therefore we consider an alternative method.

2.3.2 Polynomial generation

An older framework to obtaining constitutive equations is the method described in Green
and Adkins (1970); Spencer (1971). In this method, polynomial scalar valued constitutive
functions are considered, and algebraic theorems are applied to find the integrity basis of the
function by examining the symmetries in the arguments under the symmetry transformations
Q ∈ gκ.

This method can be extended to obtain tensor functions and not just scalar valued
functions. To show this, consider a tensor function A : sym → sym ,A = A(E). The
necessary condition for invariance under symmetry transformations is given by

A(QEQT) = QA(E)QT, ∀Q ∈ gκ, (2.122)

where gκ is the symmetry group for the material relative to the configuration κ. Now, using
(2.122), form the inner product with an arbitrary tensor D, which has the transformation
D̄ = QDQT. Then

Aij(Ē)D̄ij = QikAkl(E)QjlD̄ij, (2.123)

where Ē = QEQT, and similarly for D̄, for Q ∈ gκ. Next, the result D̄ij = QikDklQjl

substituted into (2.123) and simplifying gives

Aij(Ē)D̄ij = Akl(E)Dkl, (2.124)

so that the scalar valued function
F = Aij(E)Dij (2.125)

is invariant under the symmetry group of the material, gκ. The constitutive equation for
Aij(E) is then given by computing the derivative of the scalar function F through

Aij =
∂F

∂Dij

∣∣∣∣
D=0

. (2.126)
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Using this approach we can generate tensor valued functions by applying the methods in
Green and Adkins (1970); Spencer (1971). The examples in these references are helpful but
not sufficient for our purposes, since we require the incorporation of multiple arguments. As
a side note, we highly recommend reviewing these examples, in order to better digest the
rest of this section.

Now we examine the functions we must consider in order to complete the quantities shown
in Table 2.1. The scalar valued strain energy W and yield function y are straightforward to
determine. The generation of the lattice spin, however, deserves emphasis. We first repeat
the derivation leading to (2.126). Since Ω ∈ skw , the inner product

F = ΩijDij (2.127)

only depends on the antisymmetric part of Dij. Therefore we can obtain

F = ΩijDij = Da
ijΩij = εikjdkεiljwl = δkldkωl = dkωk, (2.128)

where ωk, dk are the axial vectors of Ωij, D
a
ij, respectively. The axial vector of Ω is then

obtained via

ωk =
∂F

∂dk

∣∣∣∣
d=0

. (2.129)

For example, for item 3, in Table 2.1, the rate independent spin, we require the representation
for the anisotropic scalar function

F = F (S, Ṡ,v), (2.130)

where v is the axial vector of a skew symmetric tensor.
Similar arguments hold if the desired constitutive function is a symmetric tensor. Taking

the product
F = AijDij

for a symmetric A, Aij = Aji, only depends on the symmetric component of Dij, and the
constitutive function is obtained by computing

Aij =
∂F

∂Ds
ij

∣∣∣∣
Ds

ij=0

. (2.131)

where Ds
ij is the symmetric part of Dij.

2.3.3 Constitutive functions for plasticity - integrity basis.

We now develop several constitutive equations from Table 2.1. For the functions not covered
explicitly, the general plan of attack should be evident. The procedure utilizes the prescrip-
tion in Green and Adkins (1970); Spencer (1971) which is based on mathematical theorems
of polynomials. In overview, we apply the elements of the symmetry group one at a time,
and apply one of several theorems, as they are required, in order to ensure invariance of the
polynomial integrity basis. Specifically, we will make use of the following theorems:
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Theorem 1 (Green, 1970). A polynomial basis for polynomials which are symmetric in the
two sets of variables (y1, y2, ..., yn) and (z1, z2, ..., zn) is formed from the quantities

Kj =
1

2
(yj + zj) (j = 1, 2, ..., n) (2.132)

Kjk =
1

2
(yjzk + ykzj) (j, k = 1, 2, ..., n) (2.133)

Theorem 2 (Green, 1970). A polynomial basis for polynomials which are symmetric in the
three pairs of variables (y1, z1), (y2, z2), and (y3, z3) is formed by the quantities

L1 = y1 + y2 + y3 L2 = y2y3 + y3y1 + y1y2
L3 = y1y2y3 L4 = z1 + z2 + z3
L5 = z2z3 + z3z1 + z1z2 L6 = z1z2z3
L7 = y2z3 + y3z1 + y1z2 + z2y3 + z3y1 + z1y2 L8 = y1z2z3 + y2z3z1 + y3z1z2
L9 = z1y2y3 + z2y3y1 + z3y1y2

Theorem 3 (Green, 1970). A polynomial basis for polynomials which are symmetric in
variables (y1, y2, y3, z1, z2, z3) which are form-invariant under cyclic rotation of the subscripts
1,2,3 is formed by the quantities

M1 = y1 + y2 + y3 M2 = y2y3 + y3y1 + y1y2
M3 = y1y2y3 M4 = z1 + z2 + z3
M5 = z2z3 + z3z1 + z1z2 M6 = z1z2z3
M7 = y2z3 + y3z1 + y1z2 M8 = z2y3 + z3y1 + z1y2
M9 = y3y

2
2 + y1y

2
3 + y2y

2
1 M10 = z3z

2
2 + z1z

2
3 + z2z

2
1

M11 = y1z2z3 + y2z3z1 + y3z1z2 M12 = z1y2y3 + z2y3y1 + z3y1y2
M13 = y1y2z2 + y2y3z3 + y3y1z1 M14 = z1z2y2 + z2z3y3 + z3z1y1

Theorem 4 (Green, 1970). A polynomial basis for a polynomial in the variables

y1, y2, ..., zn, N1, N2, ..., Nk,

which is form-invariant under a group of transformations under which N1, N2, ..., Nk are
invariant is formed by adjoining to the quantities N1, N2, ..., Nk the polynomial basis for
polynomials in the variables y1, y2, ..., zn which are form-invariant under the given group of
transformations.

Theorem 5 (Spencer, 1971). An integrity basis for polynomials which are symmetric in the
three sets of variables (u1, v1, w1, ..., z1), (u2, v2, w2, ..., z2), (u3, v3, w3, ..., z3) is formed by

u1 + u2 + u3, u2u3 + u3u1 + u1u2 u1u2u3 (2.134)

together with the expressions obtained by substituting vi, wi, ..., zi for ui;

u1v1 + u2v2 + u3v3, u2u3v1 + u3u1v2 + u1u2v3 u1v2v3 + u2v3v1 + u3v1v2 (2.135)
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together with the expressions obtained by substituting for ui and vi all distinct combinations
of two different symbols formed from ui, vi, ..., zi;

u1v1w1 + u2v2w2 + u3v3w3

together with the expressions obtained by substituting for ui, vi, wi all distinct combinations
of three different symbols formed from ui, vi, ..., zi.

Theorem 6 (Spencer, 1971). An integrity basis for polynomials in the three sets of vari-
ables (u1, v1, w1, ..., z1), (u2, v2, w2, ..., z2), (u3, v3, w3, ..., z3) which are invariant under cyclic
permutations of the suffixes 1,2, and 3 consists of the integrity basis for polynomials which
are symmetric in the variables given by Theorem 5;

u2u3(u2 − u3) + u3u1(u3 − u1) + u1u2(u1 − u2) (2.136)

together with the expressions obtained by substituting vi, wi, ..., zi for ui;

u1(v2 − v3) + u2(v3 − v1) + u3(v1 − v2) (2.137)

u2u3(v2 − v3) + u3u1(v3 − v1) + u1u2(v1 − v2)

v2v3(u2 − u3)− v3v1(u3 − u1)− v1v2(u1 − u2)

together with the expressions obtained by substituting for ui and vi all distinct combinations
of two different symbols formed from ui, vi, ..., zi;

u1v1(w2 − w3) + u2v2(w3 − w1) + u3v3(w1 − w2)

together with the expressions obtained by substituting for ui, vi, wi all distinct combinations
of three different symbols formed from ui, vi, ..., zi.

After applying the one or more of the above theorems, depending on the case under
consideration, we will arrive at an integrity basis for the polynomial F = F (A,B,v, ...),
written in the form

F = F (A) = F (x1, x2, ..., y1, y2, ..., z1, z2, ...) (2.138)

where, in this case xi, yi, zi : A → R are the integrity basis elements based on the argument
A. Here only, let the symbols x, y, z carry additional meaning: they refer to the order of
the integrity element. Therefore xi, i = 1, 2, ..., Nx are of, say order 1, yi, i = 1, 2, ..., Ny are
of order 2, and zi, i = 1, 2, ..., Nz are of order 3. Depending on the symmetry group, higher
order terms may be required. The polynomial representation (to order 3) is then given by
the expansion

F (A) = b+
∑
i

cixi +
∑
i

∑
j

dijxixj +
∑
i

eiyi +
∑
i

∑
j

∑
k

fijkxixjxk

+
∑
i

∑
j

gijxiyj +
∑
i

hizi, (2.139)
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where the arrays b, ci, dij, ei, fijk, gij, hi are material constants which have certain symmetries
like dij = dji, fijk = fjik, etc. Of course, cross order terms have gij 6= gji, in general. The
expansion (2.139) is more complicated for multiple arguments in the function F , but the
same idea holds; take all possible combinations of the integrity elements up to a certain
specified order of expansion. We now proceed to apply the above tools to generate the
constitutive equations for specific crystal types.

2.3.3.1 Cubic crystals

In this section we generate constitutive functions for cubic crystals. These are an important
case to consider, both as a point of practical relevance (iron is BCC, aluminum is FCC), and
of theoretical interest, since constitutive functions are more difficult for cubic crystals than
for monoclinic, for example. There are several groups in the cubic class (Green and Adkins,
1970). The group of maximum order is the hexoctahedral point group, which character-
izes many elemental metals. The hexoctahedral group consists of the following elements of
O(3,R)

I,C,R1,R2,R3,D1,D2,D3,T1,CT1,R1T1,R2T1,R3T1,D1T1,D2T1,D3T1,
T2,CT2,R1T2,R2T2,R3T2,D1T2,D2T2,D3T2,T3,CT3,R1T3,R2T3,R3T3,
D1T3,D2T3,D3T3,M1,CM1,R1M1,R2M1,R3M1,D1M1,D2M1,D3M1,
M2,CM2,R1M2,R2M2,R3M2,D1M2,D2M2,D3M2,

(2.140)

where C = −I is central inversion, Ri are reflections though planes normal to ei, Di are
π rotations about ei, T1 is reflection in the plane through the e1 axis bisecting the angle
between e2 and e3, T2 is reflection in the plane through the e2 axis bisecting the angle
between e3 and e1, T3 is reflection in the plane through the e3 axis bisecting the angle
between e1 and e2. M1,M2 are rotations of 2π/3, 4π/3 respectively about the axis e1+e2+e3.
These elements are introduced in the book by Green and Adkins (1970).

We will carry out the general procedure for functions F (A,B,v) under the elements of
the symmetry group given in (2.140). As seen in Table 2.1 this will give us access to W (E),
y(E), Ω(S), y(E ′), Ω(S, Ṡ), y(E, ξ). The requirements for each of these functions will be
different, that is, we have previously established that y(E) will be even in E where Ω(S) will
be odd in S. During the derivation we highlight when relevant constitutive equations can
be picked out for lower symmetry crystals. For example, note that the elements in (2.140)
include the subgroups

I,C,R1,D1 (2.141)

and
I,C,R1,R2,R3,D1,D2,D3, (2.142)

which characterize the symmetry groups for the monoclinic-prismatic and rhombic-dipyramidal
point groups respectively. Constitutive equations for these groups will be pointed out in the
course of deriving the representation for the hexoctahedral point group, (2.140).
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Before beginning, an important fact to recall is that axial vectors transform under rota-
tions Q ∈ O(3,R) as

v̄ = detQQv. (2.143)

For example, under the reflection R1 = I− 2e1 ⊗ e1 we have

v̄ = −1(v − 2v · e1e1) = −v + 2e1v · e1. (2.144)

Therefore these transformations differ from those of vectors (Green and Adkins, 1970, section
1.6).

Integrity basis for cubic crystals. In this section, the general function whose integrity
basis we are seeking is the function

F = F (A,B,v), (2.145)

for which F linear in v,B, and quadratic in A. This function represents the spin function
Ω(S, Ṡ) for the rate independent version in (2.110). The linearity in v,B follows from the
fact that we are after a skew tensor Ω and that we have rate independence. The quadratic
dependence inA is largely arbitrary. These restrictions are crucial to keep in mind, otherwise
the computational task increases greatly. This function is more complicated than most
examples seen in the literature (Green and Adkins, 1970; Spencer, 1971), which focus on
single arguments, and so is a useful example to provide. Some familiarity with Green and
Adkins (1970) is useful to refer to as a simpler case of the following procedure. The derivation
of the function (2.145) also serves as something of a workhorse in this document, since many
steps can be retraced with slight modifications for other functions in Table 2.1 which we will
make use of.

To begin, consider the effect of the reflection symmetries on F . Under R1, we have the
component transformations

R1 :
v̄1 = v1 v̄2 = −v2 v̄3 = −v3
Ā11 = A11 Ā22 = A22 Ā33 = A33

Ā23 = A23 Ā13 = −A13 Ā12 = −A12.
(2.146)

The transformation properties in (2.146) are the same for B as A, so we will not list them
here. Also note that (2.143) implies that the transformation of v under D1 is the same as
(2.146), which is not true for a normal vector.

Based on the results of the transformation (2.146), we use Theorem 1 with

(y1, y2, y3, y4, y5, y6) = (A12, A13, B12, B13, v2, v3)

and
(z1, z2, z3, z4, z5, z6) = (−A12,−A13,−B12,−B13,−v2,−v3),
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and obtain the following invariant terms, organized in the symmetric array (see (2.133))

[Kij](R1) =


A2

12 A12A13 A12B12 A12B13 A12v2 A12v3
A2

13 A13B12 A13B13 A13v2 A13v3
B2

12 B12B13 B12v2 B12v3
B2

13 B13v2 B13v3
v22 v2v3

sym v23

 . (2.147)

Next, D2 gives the transformations (equivalent to R2)

D2 :
v̄1 = −v1 v̄2 = v2 v̄3 = −v3
Ā11 = A11 Ā22 = A22 Ā33 = A33

Ā23 = −A23 Ā13 = A13 Ā12 = −A12.
(2.148)

In the function we require for the current analysis, the product v2v3 will not appear at the
order we are considering. The result of the transformation D2, indicates again using Theo-
rem 1, with {yi}, {zi} = (±) {A23, B23, v1, A13A12, A13B12, A12B13, A12v2, A13v3, B12v2, B13v3}
and obtain the new integrity elements

[Kij](D2) =

A2
23 A23B23 [A23v1] A23A12B13 A23A13B12 [A23A12v2] [A23A13v3] [A23B12v2] [A23B13v3] A23A12A13

B2
23 [B23v1] B23A12B13 B23A13B12 [B23A12v2] [B23A13v3] B23B12v2 B23B13v3 B23A12A13

v21 [v1A12B13] [v1A13B12] v1A12v2 v1A13v3 v1B12v2 v1B13v3 v1A12A13

A2
12B

2
13 A12B13A13B12 A12B13A12v2 A12B13A13v3 A12B13B12v2 A12B13B13v3 A12B13A12A13

A2
13B

2
12 A13B12A12v2 A13B12A13v3 A13B12B12v2 A13B12B13v3 B12A13A12A13

A2
12v

2
2 A12v2A13v3 A12v2B12v2 A12v2B13v3 A12v2A12A13

A2
13v

2
3 A13v3B12v2 A13v3B13v3 A13v3A12A13

B2
12v

2
2 B12v2B13v3 B12v2A12A13

B2
13v

2
3
2

B13v3A12A13
sym

(2.149)
Next, we can reduce the basis elements developed in Equations (2.147), (2.149). For

example, in calculating Ω(S, Ṡ) we need terms which multiply v linearly (since in the end
we apply Equation (2.129)). It is required to carry out the reductions with this in mind;
else we would be clearly be buried in symbols. The other requirement to recall is that we
want a linear function in B, (B represents Ṡ), which we must have for rate independence,
see (2.92). Therefore, we will look at expansions up to order (2, 1, 1), where the indices in
the array of polynomial order, (i, j, k), indicates that entries of A have index i, entries of
B have index j, and entries of v have index k. With this we can immediately drop from
consideration terms which have higher order terms in B,v. In (2.149), terms which we will
accept in the representation of F are highlighted by braces [()]. After this reduction we have
the function

F = F

 A11, A22, A33, B11, B22, B33, A23v1, A13v2, A12v3, B23v1, B13v2, B12v3
v1A12B13, v1A13B12, B23A12v2, A23B12v2, B23A13v3, A23B13v3,
A2

12, A
2
13, A

2
23, A12B12, A13B13, A23B23, A23A12v2, A23A13v3, v1A12A13

.

 (2.150)
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Equation (2.150) turns out to also be invariant under D3. Equation (2.150) therefore char-
acterizes the integrity basis for the plastic spin Ω(S, Ṡ) through the rhombic classes, (2.142).
To completely write down the function, apply the expansion technique of (2.139) up to order
(2, 1, 1) in A,B,v. Then executing (2.129) gives the spin. This expansion is also sufficient
to characterize the yield function incorporating dislocation content, y(E, ξ), with the caveat
that we have not retained quadratic powers of ξ. Since quadratic dependence on ξ is proba-
bly desirable, we revisit this issue in a later discussion. The spin function for the monoclinic
class (2.141) would be obtained by taking all terms in (2.147) which are of order ≤ 1 in
powers of vi.

To complete the constitutive framework for the rhombic and monoclinic classes, we can
consider the functions W (E), y(E), to quadratic order in a single symmetric argument. Fol-
lowing the previous steps with these functional arguments we have the integrity basis

F = F (A11, A22, A33, A
2
23, A

2
13, A

2
12). (2.151)

Taking this a step further, of relevance to y(E ′) = y(sym E ′, skw E ′) to quadratic order, we
have the integrity basis

F = F (A11, A22, A33, A23v1, A13v2, A12v3, A
2
23, A

2
13, A

2
12, v

2
1, v

2
2, v

2
3). (2.152)

The basis elements in (2.151) and (2.152) are also invariant under the transformationsR3,D3.
Therefore these functions are completed up to the rhombic point group symmetry. For the
monoclinic system these same two functions are given by the forms

F = F (A11, A22, A33, A23, A
2
13, A

2
12, A12A13) (2.153)

and

F = F (A11, A22, A33, A23, A
2
13, A

2
12, A12A13, v1, v2v3, v

2
2, v

2
3, A13v2, A13v3, A12v2, A12v3).

(2.154)
Again, to completely write down the polynomial function, we would apply the expansion
technique of (2.139). For the yield function we would look at order 2 in A, and for the
function based on Eshelby stress we would go to the order (2, 0), (0, 2), (1, 1) in A,v.
Clearly these constitutive functions represent experimental challenges in terms of validation
for low symmetry crystals, since an enormous number of material parameters are rapidly
required, each of which must be measured. Things improve somewhat for cubic symmetry;
we now continue the derivation leading to that result.

To briefly summarize to this point, after consideration of the actions of D1, D2, D3,
R1, R2, R3 the invariant function for spin is given by (2.150). Next consider the action of
M1,M2, the rotations through the cube diagonal. These actions give the transformations

M1 :
v̄1 = v2 v̄2 = v3 v̄3 = v1
Ā11 = A22 Ā22 = A33 Ā33 = A11

Ā23 = A13 Ā13 = A12 Ā12 = A23,
(2.155)
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M2 :
v̄1 = v3 v̄2 = v1 v̄3 = v2
Ā11 = A33 Ā22 = A11 Ā33 = A22

Ā23 = A12 Ā13 = A23 Ā12 = A13.
(2.156)

Considering both transformations, we have the equivalences

F (A,B,v) = F

(
A11, A22, A33, B11, B22, B33, A23v1, A13v2, A12v3, B23v1, B13v2, B12v3
v1A12B13, v1A13B12, B23A12v2, A23B12v2, B23A13v3, A23B13v3, ...

)
= F

(
A22, A33, A11, B22, B33, B11, A13v2, A12v3, A23v1, B13v2, B12v3, B23v1
v3A13B23, v3A23B13, B12A13v1, A12B13v1, B12A23v1, A12B23v2, ...

)
= F

(
A33, A11, A22, B33, B11, B22, A23v1, A13v2, A12v3, B23v1, B13v2, B12v3
v2A23B12, v2A12B23, B13A23v3, A13B23v3, B13A12v2, A13B12v1, ...

)
.

(2.157)
The transformations of (2.157) are therefore cyclic in the grouped quantities

(A11, A22, A33) , (B11, B22, B33) , (A23v1, A13v2, A12v3) , (B23v1, B13v2, B12v3) ,
(v1A12B13, v3A13B23, v2A23B12) , (v1A13B12, v3A23B13, v2A12B23) , (A

2
12, A

2
13, A

2
23) ,

(A12B12, A13B13, A23B23) , (A23A12v2, A23A13v3, v1A12A13) .
(2.158)

We see that these satisfy the conditions of Theorem 6. Restricting attention only up to order
(2,1,1), we see from Theorem 6, which includes (2.134), that the lowest order terms (2.134)1
are given by the sums of the 9 cycles in (2.158):

(A11 + A22 + A33) , (B11 +B22 +B33) , (A23v1 + A13v2 + A12v3) , (B23v1 +B13v2 +B12v3) ,
(v1A12B13 + v3A13B23 + v2A23B12) , (v1A13B12 + v3A23B13 + v2A12B23) , (A

2
12 + A2

13 + A2
23) ,

(A12B12 + A13B13 + A23B23) , (A23A12v2 + A23A13v3 + v1A12A13) .
(2.159)

Due to the appearance of the term |εijk|Bijvk in (2.159) we also need to retain the quadratic
combination of (A11, A22, A33) in the final expansion for F , so we must also include the term

A11A33 + A22A33 + A33A11. (2.160)

We now examine the higher order combinations between terms in (2.158). For purposes of
shorthand convenience, denote the cyclic triples in (2.158) by the designations (in respective
order)

A,B,Av,Bv, (vAB)1, (vAB)2, A
2, AB,A2v. (2.161)

Then taking a combination of terms in (2.161) we use the notation (for the terms A, B in
(2.161))

A,B : [...] (2.162)

where [...] follows from applying Theorem 6, which includes for example (2.135) and (2.137).
If the combination would produce a term of order greater than (2,1,1), that term is not
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recorded in the following. Therefore, taking all combinations of terms in (2.161) gives

A, (vA) : (A11, A22, A33) , (A23v1, A13v2, A12v3) :
A11A23v1 + A22A13v2 + A33A12v3,
A23v1(A22 − A33) + A13v2(A33 − A11) + A12v3(A11 − A22),

(2.163)

A, (vAB)1 : (A11, A22, A33) , (v1A12B13, v2A23B12, v3A13B23) , :
v1A12B13A11 + v2A23B12A22 + v3A13B23A33,
v1A12B13 (A22 − A33) + v2A23B12 (A33 − A11) + v3A13B23 (A11 − A22) ,

(2.164)

A, (vAB)2 : (v1A13B12, v2A12B23, v3A23B13) , (A11, A22, A33) :
v1A13B12A11 + v2A12B23A22 + v3A23B13A33,
v1A13B12 (A22 − A33) + v2A12B23 (A33 − A11) + v3A23B13 (A11 − A22) ,

(2.165)

A, vB : (B23v1, B13v2, B12v3) , (A11, A22, A33) :
B23v1A11 +B13v2A22 +B12v3A33,
B23v1A22A33 +B13v2A33A11 +B12v3A11A22,
B23v1 (A22 − A33) +B13v2 (A33 − A11) +B12v3 (A11 − A22) ,
A22A33 (B13v2 −B12v3) + A33A11 (B12v3 −B23v1) + A11A22 (B23v1 −B13v2) ,

(2.166)

Av,B : B11, B22, B33, A23v1, A13v2, A12v3
A23v1B11 + A13v2B22 + A12v3B33,
A23v1 (B22 −B33) + A13v2 (B33 −B11) + A12v3 (B11 −B22) ,

(2.167)

A2, vB : (B23v1, B13v2, B12v3) , (A
2
12, A

2
13, A

2
23) :

B23v1A
2
12 +B13v2A

2
13 +B12v3A

2
23,

B23v1 (A
2
13 − A2

23) +B13v2 (A
2
23 − A2

12) +B12v3 (A
2
12 − A2

13) ,
(2.168)

AB, vA : (A23B23, A13B13, A12B12) , (A23v1, A13v2, A12v3) :
A23v1A23B23 + A13v2A13B13 + A12v3A12B12,
A23v1 (A13B13 − A12B12) + A13v2 (A12B12 − A23B23) + A12v3 (A23B23 − A13B13) ,

(2.169)

A2v,B : (v1A12A13, A23A12v2, A23A13v3) , (B11, B22, B33) :
v1A12A13B11 + A23A12v2B22 + A23A13v3B33,
v1A12A13 (B22 −B33) + A23A12v2 (B33 −B11) + A23A13v3 (B11 −B22) ,

(2.170)

and

B,A,Av : (B11, B22, B33) , (A11, A22, A33) , (A23v1, A13v2, A12v3) ,
B11A11A23v1 +B22A22A13v2 +B33A33A12v3,
B11A11 (A13v2 − A12v3) +B22A22 (A12v3 − A23v1) +B33A33 (A23v1 − A13v2) .

(2.171)

The integrity elements listed thus far in (2.164) to (2.171) are representative of the tetartoidal
and diploidal point groups in the cubic class. Continuing our march to hexoctahedral, we
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consider the element T3. We have the transformation

T3 :
v̄1 = v2 v̄2 = v1 v̄3 = −v3
Ā11 = A22 Ā22 = A11 Ā33 = A33

Ā23 = −A13 Ā13 = −A23 Ā12 = A12.
(2.172)

In passing, note that these are different results for T3 than given in (Green and Adkins, 1970,
p. 12), however we believe his results reporting the strain energy function in the end were
correct, perhaps since he was only considering single arguments into the scalar function. We
need to also consider the transformation of the terms of (2.159). Upon the action of T3 we
have the results

Ā23v̄1 + Ā13v̄2 + Ā12v̄3 = −A13v2 − A23v1 − A12v3
Ā23Ā12v̄2 + Ā23Ā13v̄3 + v̄1Ā12Ā13 = −A13A12v1 − A13A23v3 − v1A12A13

v̄1Ā12B̄13, v̄3Ā13B̄23, v̄2Ā23B̄12 = −v2A12B23 − v3A23B13 − v1A13B12

v̄1Ā13B̄12, v̄3Ā23B̄13, v̄2Ā12B̄23 = −v2A23B12 − v3A13B23 − v1A12B13.

(2.173)

Therefore, upon application of Theorem 1, the first two invariants in (2.173) thus disappear
from consideration since they are only retained as terms of order (2,0,2) and (4,0,2), respec-
tively. The second two terms in (2.173) are retained by Theorem 1. Additionally, the term
analogous to (2.173)1, |εijk|Bijvk, is removed. With no terms of order (0, 1, 1) remaining, we
can also remove the (2,0,0) term (2.160). Now consider the transformation of the higher or-
der terms under T3. In these transformations the terms on the left hand side are considered
in the (̄·) frame.

A, (vA) : (A11, A22, A33) , (A23v1, A13v2, A12v3) :
A11A23v1 + A22A13v2 + A33A12v3 →
−A22A13v2 − A11A23v1 − A33A12v3,
A23v1(A22 − A33) + A13v2(A33 − A11) + A12v3(A11 − A22) →
−A13v2(A11 − A33)− A23v1(A33 − A22)− A12v3(A22 − A11)

(2.174)

A, vAB1 : (v1A12B13, v2A23B12, v3A13B23) , (A11, A22, A33) :
v1A12B13A11 + v2A23B12A22 + v3A13B23A33 → −v2A12B23A22 − v1A13B12A11 − v3A23B13A33,
v1A12B13 (A22 − A33) + v2A23B12 (A33 − A11) + v3A13B23 (A11 − A22) →
−v2A12B23 (A11 − A33)− v1A13B12 (A33 − A22)− v3A23B13 (A22 − A11)

(2.175)
A, vAB2 : (v1A13B12, v2A12B23, v3A23B13) , (A11, A22, A33) :
v1A13B12A11 + v2A12B23A22 + v3A23B13A33 → −v2A23B12A22 − v1A12B13A11 − v3A13B23A33,
v1A13B12 (A22 − A33) + v2A12B23 (A33 − A11) + v3A23B13 (A11 − A22) →
−v2A23B12 (A11 − A33)− v1A12B13 (A33 − A22)− v3A13B23 (A22 − A11)

(2.176)
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A, vB : (B23v1, B13v2, B12v3) , (A11, A22, A33) :
B23v1A11 +B13v2A22 +B12v3A33 → −B13v2A22 −B23v1A11 −B12v3A33,
B23v1A22A33 +B13v2A33A11 +B12v3A11A22 → −B13v2A11A33 −B23v1A33A22 −B12v3A22A11,
B23v1 (A22 − A33) +B13v2 (A33 − A11) +B12v3 (A11 − A22) →
−B13v2 (A11 − A33)−B23v1 (A33 − A22)−B12v3 (A22 − A11) ,
A22A33 (B13v2 −B12v3) + A33A11 (B12v3 −B23v1) + A11A22 (B23v1 −B13v2) →
−A11A33 (B23v1 −B12v3)− A33A22 (B12v3 −B13v2)− A22A11 (B13v2 −B23v1)

(2.177)
Av,B : (B11, B22, B33), (A23v1, A13v2, A12v3)
A23v1B11 + A13v2B22 + A12v3B33 → −A13v2B22 − A23v1B11 − A12v3B33,
A23v1 (B22 −B33) + A13v2 (B33 −B11) + A12v3 (B11 −B22) →
−A13v2 (B11 −B33)− A23v1 (B33 −B22)− A12v3 (B22 −B11)

(2.178)

A2, vB : (B23v1, B13v2, B12v3) , (A
2
12, A

2
13, A

2
23) :

B23v1A
2
12 +B13v2A

2
13 +B12v3A

2
23 → −B13v2A

2
12 −B23v1A

2
23 −B12v3A

2
13,

B23v1 (A
2
13 − A2

12) +B13v2 (A
2
12 − A2

23) +B12v3 (A
2
23 − A2

13) →
−B13v2 (A

2
23 − A2

12)−B23v1 (A
2
12 − A2

13)−B12v3 (A
2
13 − A2

23)

(2.179)

AB, vA : (A23B23, A13B13, A12B12) , (A23v1, A13v2, A12v3) :
A23v1A23B23 + A13v2A13B13 + A12v3A12B12 → −A13v2A13B13 − A23v1A23B23 − A12v3A12B12,
A23v1 (A13B13 − A12B12) + A13v2 (A12B12 − A23B23) + A12v3 (A23B23 − A13B13) →
−A13v2 (A23B23 − A12B12)− A23v1 (A12B12 − A13B13)− A12v3 (A13B13 − A23B23)

(2.180)
A2v,B : (v1A12A13, A23A12v2, A23A13v3) , (B11, B22, B33) :
v1A12A13B11 + A23A12v2B22 + A23A13v3B33 →
−v2A12A23B22 − A13A12v1B11 − A13A23v3B33,
v1A12A13 (B22 −B33) + A23A12v2 (B33 −B11) + A23A13v3 (B11 −B22) →
−v2A12A23 (B11 −B33)− A13A12v1 (B33 −B22)− A13A23v3 (B22 −B11)

(2.181)

A,B,Av : (A11, A22, A33) , (B11, B22, B33) , (A23v1, A13v2, A12v3) :
B11A11A23v1 +B22A22A13v2 +B33A33A12v3 →
−B22A22A13v2 −B11A11A23v1 −B33A33A12v3,
B11A11 (A13v2 − A12v3) +B22A22 (A12v3 − A23v1) +B33A33 (A23v1 − A13v2) →
−B22A22 (A23v1 − A12v3)−B11A11 (A12v3 − A13v1)−B33A33 (A13v2 − A23v1)

(2.182)

Applying Theorem 11 to the results gives the final integrity basis elements. Theorem 12
need not be considered since it gives higher order contributions, as encountered previously
in the text after Equation (2.173). In other words, many terms are eliminated after use of
Theorem 1, since they must be squared after elimination by Theorem 11 and hence are no
longer linear in v. Final terms in the integrity basis are the terms given by the higher order
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combinations with shorthand designations

i0 = (A, vA)2, i1 = (A, vAB1)1 − (A, vAB2)1, i2 = (A, vAB1)2 − (A, vAB2)2,
i3 = (A, vB)3, i4 = (A, vB)4, i5 = (Av,B)2, i6 = (A2, Bv)2,
i7 = (AB,Av)2, i8 = (A2v,B)2, i9 = (B,A,Av)2, i10 = vAB1 − vAB2,

(2.183)

where the subscripts (e.g. the 2 in the shorthand (A, vA)2) denotes the line in the associated
result from the previous equations; in the particular case of (A, vA)2, (A, vA)2 denotes the
first term from line 2 of Equation (2.174), which (2.174) demonstrates is invariant under T3.
The explicit integrity elements from i0, ..., i10 in (2.183) are denoted as

w
(2,0,1)
1 = A23v1(A22 − A33) + A13v2(A33 − A11) + A12v3(A11 − A22)

y
(1,1,1)
1 = v1A13B12 + v3A23B13 + v2A12B23 − v2A23B12 − v3A13B23 − v1A12B13

y
(1,1,1)
2 = B23v1 (A22 − A33) +B13v2 (A33 − A11) +B12v3 (A11 − A22)

y
(1,1,1)
3 = A23v1 (B22 −B33) + A13v2 (B33 −B11) + A12v3 (B11 −B22)

z
(2,1,1)
1 = v1A12B13A11 + v2A23B12A22 + v3A13B23A33

−v1A13B12A11 − v2A12B23A22 − v3A23B13A33

z
(2,1,1)
2 = v1A12B13(A22 − A33) + v2A23B12(A33 − A11) + v3A13B23(A11 − A22)
−v2A12B23(A11 − A33)− v1A13B12(A33 − A22)− v3A23B13(A22 − A11)

z
(2,1,1)
3 = A22A33 (B13v2 −B12v3) + A33A11 (B12v3 −B23v1) + A11A22 (B23v1 −B13v2)

z
(2,1,1)
4 = B23v1 (A

2
13 − A2

12) +B13v2 (A
2
12 − A2

23) +B12v3 (A
2
23 − A2

13)

z
(2,1,1)
5 = A23v1 (A13B13 − A12B12) + A13v2 (A12B12 − A23B23) + A12v3 (A23B23 − A13B13)

z
(2,1,1)
6 = v1A12A13 (B22 −B33) + A23A12v2 (B33 −B11) + A23A13v3 (B11 −B22)

z
(2,1,1)
7 = B11A11 (A13v2 − A12v3) +B22A22 (A12v3 − A23v1) +B33A33 (A23v1 − A13v2) ,

(2.184)
where the notation (·)(i,j,k) denotes the order of the term in powers of A,B,v, as used
previously in this section. To complete the expansion we also need accounting of the lower
order terms

x
(1,0,0)
1 = A11 + A22 + A33

x
(0,1,0)
1 = B11 +B22 +B33.

(2.185)

Putting it all together, in (2.184) we have the expansion

F (A,B,v) =
∑
i

∑
j

b
(1,0,0)
ij x

(1,0,0)
i yj +

∑
i

∑
j

b
(0,1,0)
ij x

(0,1,0)
i wj +

∑
i

cizi (2.186)

for a total of (|{b(1,0,0)ij }| = 3) + (|{b(0,1,0)ij }| = 1) + (|{ci}| = 7) = 11 constants. This basis
holds under all other transformations in the hexoctahedral point group, so it is indeed the
integrity basis. Additionally, it is valid for hextetrahedral and gyroidal point groups as well.
The spin Ω is finally given by executing Equation (2.129) on (2.186). The tensor components
of the spin are

Ω23 = −∂F/∂v1 Ω13 = ∂F/∂v2 Ω12 = −∂F/∂v3 (2.187)
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with the matrix representation

[Ω] =

 0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0

 . (2.188)

In our applications we assume that reorientation functions depend on the stress and the
stress rate, so that Ω = Ω(S, Ṡ) is given by using (2.184), (2.185), (2.186), (2.187) and
(2.188) with the replacements Aij = Sij, and Bij = Ṡij. The material parameters are given

by the arrays {b(1,0,0)ij }, {b(0,1,0)ij }, {ci} in (2.186). To complete the flow rule (2.110), we now
consider the yield function using the polynomial framework established thus far.

The yield function and strain energy function, both of the form F (A) for cubic symmetry,
are obtained by applying the same sequence. Considering first R1,D2, we obtained (2.151).
Then upon considering M1,M2,T3,T2, we can use Theorem 2 directly, and obtain the
integrity basis to quadratic order as

F (A) = F (A11 + A22 + A33, A
2
23 + A2

13 + A2
12, A22A33 + A33A11 + A11A22). (2.189)

The polynomial is then written as

F (A) =
∑
i

∑
j

byijx
y
i x

y
j +

∑
i

cyi y
y
i (2.190)

for constants byij, c
y
i , with the superscript y used to designate these constants relate to yield.

The basis terms are
xy1 ≡ A11 + A22 + A33, (2.191)

and

yy1 ≡ A2
23 + A2

13 + A2
12 (2.192)

yy2 ≡ A22A33 + A33A11 + A11A22, (2.193)

so that |{byij}| = 1, |{cyi }| = 2, for a total of three constants (at quadratic order in A).
We therefore have y(S) for hexoctahedral symmetry being specified by three constants, and
similarly for the strain energy function W (E). The coefficients Cijkl from the array (2.85)
can be related to the constants in (2.190) by computing,

Cijkl =
∂2F

∂Aij∂Akl

∣∣∣∣
A=0

through the direct use of (2.190).
Applied to yield functions, it proves convenient to use the equivalence

(xy1)
2 = A2

11 + A2
22 + A2

33 + 2yy2 (2.194)
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so we can replace yy2 with the basis element

(yy)′2 = A2
11 + A2

22 + A2
33, (2.195)

while everything else goes through unchanged in the expansion (2.190). Next we consider
some other theoretically and empirically motivated aspects to encode in the form of the yield
function.

Positive dissipation. First, to match the stated requirements of the optimization prob-
lem associated with the maximum dissipation postulate, (2.103), we must have y(S) = 0
indicating a state of yielding. Therefore we subtract off a fourth material constant ymax from
the polynomial expansion which is quadratic in S. Secondly, there is experimental evidence
that pressure does not lead to yield5. Therefore we remove the dependence on the first basis
element xy1 from the expansion. With this change, applying (2.190) for the yield function
gives

y(S) = cy1(S
2
23 + S2

13 + S2
12) + cy2(S

2
11 + S2

22 + S2
33)− ymax. (2.196)

The thermodynamic requirement of positive dissipation states that

∂y

∂S
· S > 0. (2.197)

Using (2.196), we have (Gupta et al., 2011)

D = 2cy1(S
2
23 + S2

13 + S2
12 + S2

11 + S2
22 + S2

33) + 2(cy2 − cy1)(S
2
11 + S2

22 + S2
33)

= 2cy1‖S‖2 + 2(cy2 − cy1)(S
2
11 + S2

22 + S2
33). (2.198)

Imposing D > 0 then requires that cy1 > 0 and cy2 > cy1, where in Gupta et al. (2011) they
used the deviatoric stress S̄ in (2.198). Based on the simple quadratic form for y, we could
get a similar result without imposing deviatoric stress by considering that (2.196) is of the
form

y(S) =
1

2
YijklSijSkl − ymax (2.199)

for material constants Yijkl(c
y
1, c

y
2). Then the dissipation restriction simply states that

D > 0 =⇒ YijklSijSkl > 0 (2.200)

so that the eigenvalues of Yijkl must be positive. Relating Yijkl to c
y
1, c

y
2 through the use of,

e.g. Yijkl = ∂2y/∂Sij∂Skl thus gives the restriction cy1 > 0, cy2 > 0.

5But it can affect when yield occurs.
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Plastic incompressibility. Finally, plastic incompressibility (that is, no volumetric flow
during plastic deformation) requires that tr K−1K̇ = 0, hence we have the restriction

0 = tr
∂y

∂S
= 2cy2(S11 + S22 + S33). (2.201)

This equation can be satisfied by replacing the functional dependence of the yield function
on S by the deviatoric stress

S̄ = S− 1/3(tr S)I.

The lattice spin could likewise be considered as dependent upon the deviatoric stress, Ω =

Ω(S̄, ˙̄S), however, this is an additional assumption which may or may not be borne out in
experimental observations. We note that the crystal plasticity model of (2.6) is naturally only
dependent upon the deviatoric stress since S·sα0⊗nα

0 = S̄·sα0⊗nα
0 , since I·sα0⊗nα

0 = sα0 ·nα
0 = 0

Summary. Taking all restrictions together, the yield function for cubic symmetry, at
quadratic order in its argument (S or E), with the form y(S) = 0 defining the bound-
ary of the elastic region, satisfying the dissipation inequality and isochoric plastic flow is
written as

y(S) = cy1(S̄
2
23 + S̄2

13 + S̄2
12) + cy2(S̄

2
11 + S̄2

22 + S̄2
33)− ymax. (2.202)

with the restrictions cy1 > 0, cy2 > cy1, and with a contribution to the flow rule of

∂y

∂S
= 2

cy2S̄11 cy1S̄12 cy1S̄13

cy2S̄22 cy1S̄23

sym cy2S̄33

 . (2.203)

The material parameters in the model are then cy1, c
y
2, ymax. The values for these parameters

can only be obtained from experimental data.
We had previously raised questions as to the physicality of the rate independent flow

rule developed here, Ω(S, Ṡ) and resulting in (2.186), see §2.2.3.3. The problem is that this
form is not guaranteed to have the property that the spin reverses upon change of loading
direction. Therefore we now consider other forms for the spin which more clearly capture
this crucial property.

Alternative formulations for the spin

In this section we investigate lattice reorientation functions derived from scalar functions of
the form

F = F (A,v). (2.204)

This enables spin functions of the form Ω = Ω(S), which by construction satisfies the
physical requirement Ω(S) = −Ω(−S). Rate independence can be satisfied by modifying
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the flow rule from (2.110) to be written

K−1K̇ = −λ
(
∂y

∂S
+Ω(S)

)
. (2.205)

Factoring out λ gives the rate independent phenomenology, since λ is solved for based on
the constraint from the yield surface, independent of any material-dependent time scale.

Previously we considered developing the constitutive function (2.145) out to order (2,1,1)
in powers of A,B,v for hexoctahedral point group symmetry. In this section we consider
expansions up to order (3, 1) and (5, 1) in A,v. This is because for hexoctahedral symmetry
there is no such function

Ωij =WijklAkl (2.206)

for a symmetric tensor Akl and skew symmetric Ωij. Therefore we need to consider at least
the cubic order expansion

Ωij = WijklmnopAklAmnAop. (2.207)

Cubic order integrity basis. Much of the same derivation used to obtain (2.186) applies
here. To prove that there are no contributions to the spin at linear order for hexoctahedral
symmetry, from our previous derivation note that there are no terms in the integrity basis
which are linear in A,v due to the required invariance under the Ti, i = 1, 2, 3 transforma-
tions, see Equation (2.172) and (2.173). On the other hand, the cubic groups tetartoidal and
diploidal classes do not have any Ti rotation elements and a linear contribution of the form
(2.206) would be anticipated for those cases.

Following the same prescription as done previously for F (A,B,v), we eventually obtain
the integrity basis elements

F (A,v) :
xcube1 = A11 + A22 + A33

ycube1 = A11 (A13v2 − A12v3) + A22 (A12v3 − A23v1) + A33 (A23v1 − A13v2) ,
zcube1 = A22A33 (A13v2 − A12v3) + A33A11 (A12v3 − A23v1) + A11A22 (A23v1 − A13v2) ,
zcube2 = A2

23 (A13v2 − A12v3) + A2
13 (A12v3 − A23v1) + A2

12 (A23v1 − A13v2) ,
zcube3 = A11 (A23A12v2 − A23A13v3) + A22 (A23A13v3 − v1A12A13) + A33 (v1A12A13 − A23A12v2)

,

(2.208)
with associated polynomial expansion

F (A,v)) =
1∑

i=1

1∑
j=1

bcubeij xcubei ycubej +
3∑

i=1

ccubei zcubei , (2.209)

where the arrays bcubeij , ccubei are material constants. The associated spin vector ω = 〈Ω〉 =
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ωiei has components

ω1 = bcube11 (A11 + A22 + A33) (A33A23 − A23A22) + ccube1 (A11A22A23 − A23A33A11)

+ ccube2

(
−A23A

2
13 + A2

12A23

)
+ ccube3 (−A22A12A13 + A33A12A13)

ω2 = bcube11 (A11 + A22 + A33) (A11A13 − A13A33) + ccube1 (A22A33A13 − A13A11A22)

+ ccube2

(
A2

23A13 − A2
12A13

)
+ ccube3 (A11A23A12 − A33A23A12)

ω3 = bcube11 (A11 + A22 + A33) (A22A12 − A11A12) + ccube1 (A33A11A12 − A12A22A33)

+ ccube2

(
−A2

23A12 + A2
13A12

)
+ ccube3 (−A11A23A13 + A22A23A13) . (2.210)

The spin tensor Ω components are related to ωi by

Ω12 = −ω3 Ω13 = ω2 Ω23 = −ω1. (2.211)

with final matrix representation in Equation (2.188).

Quintic order integrity basis As long as the iron is hot, so to speak, we continue
expanding up to the quintic order. In the parameter calibrations performed in the next
section, we were interested in if there was improvement in the phenomenological match to
the crystal plasticity data by adding additional functional flexibility. Carrying out the same
procedure as before, the required integrity basis terms for a function up to order 5 in a single
argument for cubic symmetry are given by:

x1 = A11 + A22 + A33

y1 = A2
11 + A2

22 + A2
33

y2 = A2
23 + A2

13 + A2
12

z1 = A11A22A33

z2 = A12A13A23

z3 = A11A
2
23 + A22A

2
13 + A33A

2
12

xy1 = A23v1 (A22 − A33) + A13v2 (A33 − A11) + A12v3 (A11 − A22)
xz1 = A23v1 (A

2
13 − A2

12) + A13v2 (A
2
12 − A2

23) + A12v3 (A
2
23 − A2

13) ,
xz2 = v1A12A13 (A22 − A33) + A23A12v2 (A33 − A11) + A23A13v3 (A11 − A22) ,
xz3 = A22A33 (A13v2 − A12v3) + A33A11 (A12v3 − A23v1) + A11A22 (A23v1 − A13v2)
xw1 = A22A33 (A23A12v2 − A23A13v3) + A33A11 (A23A13v3 − v1A12A13)+
A11A22 (v1A12A13 − A23A12v2)
xw2 = v1A12A13 (A

2
13 − A2

12) + A23A12v2 (A
2
12 − A2

23) + A23A13v3 (A
2
23 − A2

13)
xw3 = A11A23v1 (A

2
23 − A2

12) + A22A13v2 (A
2
12 − A2

23) + A33A12v3 (A
2
23 − A2

13)
xv1 = A2

13A
2
12 (A13v2 − A12v3) + A2

12A
2
23 (A12v3 − A23v1) + A2

23A
2
13 (A23v1 − A13v2)

xv2 = A11v1A12A13 (A
2
23 − A2

12) + A22A23A12v2 (A
2
13 − A2

23) + A33A23A13v3 (A
2
12 − A2

13) .
(2.212)

We consider deviatoric dependence only, therefore we do not include the basis element x1 in
the expansion. Then the polynomial function is written as

F (A) = xz(3) + xy ∗ z(3) + xz ∗ y(6) + xv(2), (2.213)
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where we are using the shorthand a∗b to denote polynomial combinations between the terms
a and terms b. For example, xz ∗ y ≡ cijxziyj for 6 constants cij. The number of constants
required for the given combination is denoted by the notation xz ∗y(6) in (2.213). Therefore
(2.213) has a total of 14 total constants, with the assigned pairings

ai : xzi
bi : (xy1 ∗ zi)
cij : (xz)iyj
di : xvi.

(2.214)

Hardening phenomenology, backstress

Next, we consider a possible constitutive formulation to capture experimentally observed phe-
nomena such as the Bauschinger effect, kinematic and isotropic hardening. In our framework
this phenomenology enters into evolution of the yield function. Based on the polycrystalline
plasticity literature (Chaboche, 1987, 2008) a typical approach is to pose the yield function
as

y = y(Sij − χij), (2.215)

where χij is a phenomenological quantity called the backstress. The center of the yield
surface is translated in its domain space when there is a non-zero backstress, thus leading
to kinematic hardening phenomenology. A possible explanation for the microscopic origin
of kinematic hardening is an evolving dislocation density. Therefore, it seems reasonable
to assume that the backstress is some function of the geometrically necessary dislocation
content, ξ. Therefore, we consider yield functions of the form

y = ŷ(S− χ(ξ))− h(ξ), (2.216)

where χ : R9 → sym is the backstress, associated with kinematic hardening and h : R9 → R+

is the radius of the yield surface, associated with isotropic hardening. The function χ is of
the form F (A,B,v), from Table 2.1, see (2.131).

χ(ξ) =
∂F

∂B

∣∣∣∣
B=0

, (2.217)

with the interpretations A = sym ξ, v = 〈skw ξ〉. The requirements on F (A,B,v) we
consider are then: (1) linear in B, in recognition of (2.217) (2) up to quadratic order in
either of A,v, for computational expedience. Using our previous notation we need integrity
basis elements of the orders (2, 1, 0), (1, 1, 1), (0, 1, 2), and order below this. The development
leading to (2.150) is valid to consider, with some modifications, in order to obtain the required
integrity basis.

First off, we can directly retain the R1-invariant terms recorded in Equation (2.147).
Note in passing that this completes the monoclinic class specification for the constitutive
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function for χ. Next, considering the terms leading to (2.149) we have an additional factor.
This is generated from including v2v3 in the integrity basis, which we did not have to do
previously. Carrying out the modifications to (2.149), the expression analogous to (2.150) is
then

F = F


A11, A22, A33, B11, B22, B33, A23v1, A13v2, A12v3, B23v1, B13v2, B12v3
v1A12B13, v1A13B12, B23A12v2, A23B12v2, B23A13v3, A23B13v3,
A2

12, A
2
13, A

2
23, A12B12, A13B13, A23B23, A23A13B12, A23A12B13, B23A12A13,

v21, v
2
2, v

2
3, B23v2v3, B13v3v1, B12v2v1

 .

(2.218)
As before, under M1,M2, the function (2.218) is cyclic in the quantities

(A11, A22, A33) , (B11, B22, B33) , (A23v1, A13v2, A12v3) , (B23v1, B13v2, B12v3) ,
(v1A12B13, v2A23B12, v3A13B23) , (v1A13B12, v2A12B23, v3A23B13) , (A

2
23, A

2
13, A

2
12) ,

(v21, v
2
2, v

2
3) , (A23B23, A13B13, A12B12) , (B23A12A13, A23A12B13, A23A13B12) ,

(B23v2v3, B13v3v1, B12v2v1) .

(2.219)

After applying Theorems 5 and 6 we obtain the following integrity basis, with the order of
the basis terms indicated

x
(1,0,0)
1 : A11 + A22 + A33,

x
(0,1,0)
1 : B11 +B22 +B33

y
(2,0,0)
1 : A22A33 + A33A11 + A11A22

y
(2,0,0)
2 : A2

12 + A2
23 + A2

13

y
(0,0,2)
1 : v21 + v22 + v23
x
(1,1,0)
1 : A22B22 + A11B11 + A33B33,

x
(1,1,0)
2 : A23B23 + A13B13 + A12B12

y
(1,1,1)
1 : A23v1 (B22 −B33) + A13v2 (B33 −B11) + A12v3 (B11 −B22)

y
(1,1,1)
2 : B23v1 (A22 − A33) +B13v2 (A33 − A11) +B12v3 (A11 − A22)

y
(1,1,1)
3 : v1A12B13 + v2A23B12 + v3A13B23 − v2A13B23 − v1A13B12 − v3A23B13

z
(0,1,2)
1 : B23v2v3 +B13v3v1 +B12v2v1
z
(0,1,2)
2 : B11v

2
1 +B22v

2
2 +B33v

2
3

z
(2,1,0)
1 : A11A33B22 + A33A22B11 + A22A11B33,

z
(2,1,0)
2 : B11A

2
23 +B22A

2
13 +B33A

2
12

z
(2,1,0)
3 : A11A23B23 + A22A13B13 + A33A12B12

z
(2,1,0)
4 : A23B23 (A22 − A33) + A13B13 (A33 − A11) + A12B12 (A11 − A22)

z
(2,1,0)
5 : B23A12A13 + A23A12B13 + A23A13B12,

(2.220)
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the polynomial expansion is then written as

F (A,B,v) =

a
(0,1,0),(1,0,0)
ij x

(0,1,0)
i x

(1,0,0)
j + b

(0,1,0),(2,0,0)
ij x

(0,1,0)
i y

(2,0,0)
j + b

(0,1,0),(0,0,2)
ij x

(0,1,0)
i y

(0,0,2)
j +

c
(1,1,0)
i x

(1,1,0)
i + c

(1,1,0)(1,0,0)
ij x

(1,1,0)
i x

(1,0,0)
j + d

(1,1,1)
i y

(1,1,1)
i + e

(0,1,2)
i z

(0,1,2)
i + f

(2,1,0)
i z

(2,1,0)
i ,

(2.221)

where a
(·)
ij , b

(·)
ij , c

(·)
i , c

(·)
ij , d

(·)
i , e

(·)
i , f

(·)
i constitute a set of 18 material constants.

2.3.4 Discussion

In this section we have given several detailed examples of generating several constitutive
functions from Table 2.1 for hexoctahedral symmetry (maximum cubic symmetry). During
the course of the derivations, we also arrived at integrity basis forms for rhombic and mono-
clinic classes, as well as several lower order groups from the cubic class. These examples are
useful to give since the procedures are not well documented in the literature, (Green and Ad-
kins, 1970; Spencer, 1971), and we found the structural tensor approach to be unattractive
when dealing with multiple functional arguments due to the tendency to generate redundant
basis elements. Such lack of examples may be one reason why the present approach to single
crystal plasticity has not been completed prior to this study.

Later in this document we perform similar analysis for the other practically important
yet difficult to analyze crystal class: the hexagonal system. In §3.5.1.2 we examine the yield
function for this system. Then in §A.5 we give a detailed treatment of the spin function of
the form Ω = Ω(S) up to cubic order for dihexagonal-dipyramidal point group symmetry
(maximum hexagonal symmetry).

Since the hexoctahedral and dihexagonal-dipyramidal classes represent the groups with
the most symmetry out of the 32 crystallographic point groups, lower symmetry groups can
readily be picked off at various stages of the given derivations. This was done with monoclinic
and rhombic symmetry in this section, for example. All these examples taken together from
this thesis should therefore provide enough reference material to allow other researchers
interested in implementing this constitutive framework to generate complete integrity basis
elements for any of the 32 crystal point groups.

For those familiar with crystal plasticity implementations, it may be of interest to em-
phasize that this constitutive framework does not explicitly distinguish between for example
FCC and BCC crystals. Here, constitutive equations are generated based on the point group
symmetry, which is of the cubic class in both cases. In the next section we calibrate the
plasticity model defined by (2.110) against crystal plasticity models for FCC and BCC crys-
tals from the literature. According to crystal plasticity theory, FCC and BCC crystals have
different slip systems in (2.5), and therefore different reorientation behavior under the same
conditions. In our framework, this distinction will have to come out in the numerical values
of the material constants in the constitutive equations we are considering. Therefore it will
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be interesting to see how well our functions capture the different reorientation behavior be-
tween FCC and BCC. After these calibrations, we perform plane strain simulations in order
to assess the model in qualitatively simple yet informative boundary value problems.

2.4 Numerical simulations

In this section we exercise the plasticity model in numerical simulations. We ground the
model in reality by first calibrating our constitutive equations for plastic flow. Then we
develop a simple numerical method for executing plane strain simulations, incorporating
dislocation ξ, as derived from the plastic deformation field, rather than as a primitive vari-
able. Results from several simple but informative boundary value problems are shown.

2.4.1 Calibration of constitutive functions; material point simula-
tions

First we calibrate the constitutive formulas for yield and plastic flow developed in the pre-
vious section against available data. Due to a lack of usable data (Bell and Green, 1967)
our best recourse is to calibrate against a crystal plasticity model from the literature. We
calibrate these parameters by performing one of the simplest possible simulations, a spa-
tially homogeneous isochoric uniaxial extension. This simulation has the benefit of having a
degree of experimental feasibility. We now describe the algorithm used to update the plastic
variables such as the lattice reorientation. This algorithm will be used again in the plane
strain simulations.

2.4.1.1 Numerical algorithm

We calibrate the evolution of K between the phenomenological and crystal plasticity models
by simulating an isochoric extension of the form

F(s) = se1 ⊗ e1 +
1√
s
(e2 ⊗ e2 + e3 ⊗ e3). (2.222)

Although this homogeneous deformation does not necessarily correspond to the material
deformation in a uniaxial extension or compression test, it is close enough to be considered
representative of such tests. The discussion in §2.2.3.3 surrounding lattice reorientation in
axial extension experiments is pertinant to review, as this deformation results in non-zero
lattice reorientation from the crystal plasticity model.

The material is initialized at s = s0 = 1 with K(0) = K0. The initial plastic deformation
is set at K0 ∈ SO(3,R) in recognition of the experimental fact that only initial orientations
are detectable using X-ray diffraction, see the summary paragraph of §2.2.1. A constant
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extension rate parameter ṡ = const is specified, so that the extension is discretized as

s(i+1) = s(i) + ṡ∆t (2.223)

for an assigned temporal increment ∆t. Then F(i+1) ≡ F(s(i+1)) is updated using (2.222).
Next, given K(i),H(i),F(i+1), we perform what is usually referred to as a predictor corrector
scheme to stay on the yield surface, although it is really just solving a system of nonlinear
equations. The procedure is as follows. First, assume the increment F(i) → F(i+1) constitutes
elastic deformation. That is, set K(i+1) = K(i), compute H(i+1) = F(i+1)K(i+1), and evaluate
the yield function y = y(S(i+1)). Note here that the trial stress is dependent onK(i+1) through
the sequence S(i+1) ≡ S(H(i+1)) = S(F(i+1)K(i+1)). If the yield condition y(S(i+1)) < 0 is
satisfied, accept K(i+1) = K(i) and go to the next F-step by incrementing s through (2.223).
If the yield condition is violated by the new elastic state, so that y > 0, then solve the
following system of equations for λ,K(i+1), where we are using the flow rule of (2.205)

(K(i+1))−1K̇
(i+1)

= −λ
(
∂y

∂S
+Ω(S(i+1))

)
y(S(i+1)) = 0

(2.224)

where K̇
(i+1)

= (K(i+1)−K(i))/∆t, and Ṡ = (S(i+1)−S(i))/∆t. The implicit form of (2.224) is
motivated by our initial studies of flow rules of the form (2.110), in which havingΩ = Ω(S, Ṡ)
to achieve rate independence would necessitate an implicit solve.

The equation (2.224)2 enforces the yield constraint. Alternatively, instead of adding
(2.224)2 to the system of equations, to solve for λ we could use the so-called consistency
condition in the form

0 = ẏ =
∂y

∂S
· ∂S
∂E

· Ė (2.225)

where
2Ė = Ċ = K̇

T
FTFK+KTḞ

T
FK+KTFTḞK+KTFTFK̇.

Next, K̇ is given by the flow rule (2.205),

K̇ = −Kλ

(
∂y

∂S
+Ω

)
, (2.226)

which gives

Ċ =
−λ
[(

∂y

∂S
−Ω

)
KTFTFK+KTFTFK

(
∂y

∂S
+Ω

)]
+KTḞ

T
FK+KTFTḞK.

(2.227)

Then, substitution of (2.227) into (2.225) and solving for λ gives

λ =

[
∂y

∂S
· ∂S
∂E

·
(
KTḞ

T
FK+KTFTḞK

)]
∂y

∂S
· ∂S
∂E

·
[(

∂y

∂S
−Ω

)
KTFTFK+KTFTFK

(
∂y

∂S
+Ω

)] . (2.228)
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Equation (2.228) can be used to evaluate the multiplier λ and thereby reduces the number of
equations in the system (2.224) by one, but we find it more straightforward and as effective
to simply enforce remaining on the yield surface at the end of the iteration in the system of
equations. Equation (2.228) can also be used to incorporate rate independence into explicit
schemes. The solution of the equations (2.224) is obtained by Newton Raphson iterations

from initial guesses K
(i+1)
0 = K(i), and taking λ(i+1) from (2.228). Taking a positive number

for the initial guess λ
(i+1)
0 generally works, but for some boundary value problems successful

convergence of the solution was found to be dependent on the numerical value for λ
(i+1)
0 .

Therefore for robustness we use Equation (2.228) to give the initial guess for λ(i+1).

Crystal plasticity model As mentioned previously, the raw experimental data we desire
to calibrate against was not readily available. However crystal plasticity models which have
apparently been calibrated against experimental data are generally available in the literature.
Therefore we use these models to generate simulated data in order to furnish the calibration.

Although raw experimental data would be more meaningful to calibrate against, matching
the phenomenological lattice reorientation function Ω and yield function y against crystal
plasticity models which have been calibrated against data is the best we can do at this
time. In order to relate the two models more clearly, we have the equivalence K−1 = Fp,
where F = FpFe is the multiplicative decomposition of F. Then in our notation the crystal
plasticity flow rule, Equation (2.5), becomes written as

˙K−1K =

Nslips∑
α

γ̇αsα0 ⊗ nα
0 , (2.229)

where the summation is over the slip systems in the crystal, obtained from the space group
symmetry of the crystal. The shear rate γ̇α is typically given by (Anand et al., 1997)

γ̇α = γ̇0

(
|τα|
sα

)1/m

sign(τα), (2.230)

where τα is the resolved shear stress on the slip system, computed from the second Piola
Kirchoff stress as τα = S · sα0 ⊗ nα

0 . sα is the flow resistance for the slip system, γ̇0 is
a material property representing material viscosity, and m is a rate sensitivity parameter.
The Miller indices for the slip system vectors sα0 , n

α
0 , α = 1, 2, ..., Nslips for FCC (Nslips=

12) and BCC (Nslips= 24) space group symmetry are recorded in Table A.1 and Table A.2,
respectively. Due to the cubic symmetry, directional indices common in crystallography
moniker are closely related to the Cartesian components of crystallographic vectors, so that
1, 1̄, 1 = 1/

√
3 (e1 − e2 + e3) and 1, 2, 1 = 1/4(e1 + 2e2 + e3) for example (Hosford, 1993).

The flow parameters in (2.230) for BCC and FCC crystals are given in Table 2.2; these
parameters are from Anand et al. (1997); Barton et al. (2005). The slip systems used are
recorded in Tables A.1, A.2 for FCC and BCC crystals respectively. The plastic state update
is obtained from the integration of (2.229) and (2.230) during the extension (2.222).
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Table 2.2: Table of crystal plasticity parameters from (Barton et al., 2005; Anand et al.,
1997).

crystal type m γ̇0[s
−1] s0[ MPa]

BCC 0.05 0.003 250
FCC 0.012 0.001 16

2.4.1.2 Results

In order to calibrate the phenomenological model we performed the uniaxial deformation sim-
ulation described by (2.222) from a several random initial orientation, K0 ∈ SO(3,R). From
these initial orientations tests were performed to a total material stretches of smax = 1.1, 0.9
in (2.222). These two cases represent isochoric extension and contraction, respectively. The
phenomenological model was calibrated to the crystal plasticity model by using a standard
least squares method, see §3.4.1. In order to determine the phenomenological parameters we
decoupled the considerations of the yield parameters cy1, c

y
2, ymax, introduced in (2.202), from

the lattice reorientation parameters bcube11 , ccube1 , ccube2 , ccube3 which were introduced in (2.209).
That is, we used separate calibration criteria for the two in order to get initial guesses for
the parameters.

2.4.1.2.1 Calibration of yield parameters. For the yield parameters of (2.202), the
residuals were formed by taking differences in the axial Cauchy stress T, so that the residual
contribution, r, from one initial orientation is written

rsk(Θy) = (Tcp(sk))11 − (Tphen(Θ
y)(sk))11, (2.231)

where Tcp is the Cauchy stress from the crystal plasticity model and Tphen is the Cauchy
stress from the phenomenological model. The free parameters are

Θy ≡ (cy1, c
y
2, ymax) (2.232)

from (2.202). The least squares objective function associated to the residual (2.231) is written

Φ(Θy) =

Ngrains∑
m

Nsteps∑
k

[(rsk)m]
2 , (2.233)

where Ngrains is the number of initial grains taken through the simulation (2.222) and Nsteps

is the number of steps si in (2.223) where comparison between data and simulation is made,
respectively. We found that this approach works in terms of fitting the stress data, but that
there is an undesirable flexibility in the absolute numerical values of cy1, c

y
2, ymax. That this

makes sense is seen by dividing the yield equation (2.202) by any arbitrary constant, which
gives the same elastic region. To set a meaningful scale for the magnitude of the parameters
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Table 2.3: Best fit material parameters for y(S) for hexoctahedral symmetry, from (2.202).

crystal cy1 cy2 ymax[GPa2]
BCC 0.396 0.463 0.106
FCC 0.412 0.412 0.00041

(2.232), we take insight from the classical J2 theory of plasticity. There, the yield function
is of the form

y(S) = S̄ · S̄− k2 (2.234)

where it can be shown that (Malvern, 1969, p. 338)

k =
Y√
3

(2.235)

where Y is the yield stress in tension. In our formulation we would like to have something
similar, such as

ymax ≈ k2 = Y 2/3, (2.236)

in order to give an order of magnitude guess for ymax, with subsequent effect on the values
of cy1, c

y
2. To facilitate this, to the objective function (2.233) we add the residual equation

ri = ymax −
1

3
(Tphen)

2
y, (2.237)

where (Tphen)y is the axial Cauchy stress at yield, determined from the T11vss curve. Should
there be confusion it is emphasized that the procedure of assigning the extra residual (2.237)
is used simply to get more numerically intuitive values for the parameters in the yield func-
tion.

The final results for a BCC and FCC crystal are given in Table 2.3. In these results the
number of initial orientations simultaneously incorporated into the objective function was
Ngrains = 7. Since the crystal plasticity model does not have uncertainties associated with
the model parameters, we cannot assess quantitative precisions to the best fit parameters;
this being something of an unfortunately common occurrence in the literature. After cal-
ibration, the Cauchy stress curves for tension and compression were plotted in Figure 2.7
and Figure 2.8. There are only two parameters in the yield function, so fully matching the
crystal plasticity result which has corners in the yield surface is not possible. Higher order
polynomial forms for the yield function may give further improvements in the calibration,
but this is not as straightforward a proposition as might be thought. More comments on
these issues are in the discussion section following the calibration results.

2.4.1.2.2 Calibration of lattice reorientation function For the lattice reorientation
function, Ω, the residuals for the objective function were formed from the difference in



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 75

Figure 2.7: T11 Cauchy stress components for the FCC crystal plasticity model in Table 2.2
and best fit phenomenological yield function for seven initial orientations K0 ∈ SO(3,R).
Both extension and contraction behavior was used to calibrate the model as indicated in the
figure. Solid lines are results of the phenomenological model, the dashed lines are the crystal
plasticity model.

Cartesian components of the plastic deformation K at various states of the deformation
sk, k = 1, 2, ..., Nsteps. For an individual grain the residual array is

rskij (Θ) = [Kcp(sk)−Kphen(Θ)(sk)]ij , (2.238)

where Θ = (bcube11 , ccube1 , ccube2 , ccube3 ) are the reorientation parameters from (2.209), Kcp(s)
is the plastic deformation according to integrating the crystal plasticity flow rule (2.229)
and Kphen(s) is the plastic deformation according to the phenomenological flow rule (2.205)
with the yield parameters of Table 2.3. The objective function for the lattice reorientation
parameters is then written

Φ(Θ) =

Ngrains∑
m

Nsteps∑
k

3∑
i

3∑
j

[(
rskij (Θ)

)
m

]2
. (2.239)



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 76

Figure 2.8: T11 Cauchy stress components for the BCC crystal plasticity model of Table 2.2
and best fit phenomenological yield function for seven initial orientation K0 ∈ SO(3,R).
Both extension and contraction behavior was used to calibrate the model as indicated. Solid
lines are results of the phenomenological model, the dashed lines are the crystal plasticity
model.

In these results the number of initial orientations tested was Ngrains = 7, and the plastic
deformation was sampled at Nsteps = 10 data points. The best fit parameters are given in
Table 2.4. The units are such that the flow rule makes sense, e.g. we have ∂y/∂S of the same
units as Ω(S), so since Ω(S) has cubic expressions of S, the constants in Ω must be units
of stress−2 to match the linear-in-stress ∂y/∂S. The numerical differences between the BCC
and FCC models have to do with with the stress values present during plastic flow, compare
for example Figure 2.7 and Figure 2.8. The last column entry Φ∗ denotes the objective
function value at the optimal solution. This value is mostly useful for comparisons between
models.

Next, the calibrated parameters are used to qualitatively assess the ability to capture
the reorientation behavior of the single crystal. In Figure 2.9 and Figure 2.10 are shown the
extension axis e1 of (2.222) projected into the crystal reference configuration κi; an inverse
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Table 2.4: Best fit material parameters for Ω(S) . The units are [GPa−2], as required by the
flow rule.

crystal b11 c1 c2 c3 Φ∗

BCC 0.452 9.73 -7.72 -0.961 0.207
FCC 432.93 -1740.61 1092.45 198.73 0.227

Table 2.5: Best fit material parameters for Ω(S̄) up to quintic order. The units are [GPa−2],
[GPa−4] as required by the flow rule.

crystal a1 a2 a3 b1 b2 b3 c11
BCC 52.3 −20.2 −0.12 0.88 99.9 21.0 −50.4
FCC −1488.4 921.8 109.4 −5.4 −29.7 27.8 −1.3
c12 c21 c22 c31 c32 d1 d2 Φ∗

−178.4 28.1 59.7 −5.9 5.1 −48.5 −99.7 0.14
5.5 · 10−4 17.5 −7.6 17.1 −49.6 23.8 23.4 0.23

pole figure. The inset figure is a zoomed in region from the figure. Blue and black circles
represent the crystal plasticity prediction in extension, contraction respectively; red and
purple crosses represent the phenomenological model prediction in extension, contraction
respectively. On a visual basis the agreement is generally very good for the BCC crystal.
The FCC crystal captures the sense of reorientation decently well, but the final reorientation
on the inverse pole figure is of less magnitude than the crystal plasticity model.

We also tabulate calibration results from the other constitutive models for lattice reori-
entation. Table 2.5 shows the results from the quinitic order reorientation function, Ω(S̄),

in (2.213), (2.212). Table 2.6 shows the results based on the function Ω(S̄, ˙̄S) in (2.186),
(2.184), with the reduction

F (A,B,v) =
∑
i

cizi. (2.240)

Equation (2.240) follows from (2.186) after considering only deviatoric stress and stress rate
contributions.

2.4.1.2.3 Viscoplastic extension Using the same material point simulation, (2.222),
we can exercise the viscoplastic extension of the model and the evolution to the rate inde-

Table 2.6: Best fit material parameters for Ω(S̄, ˙̄S) up to order (2,1) in S̄, ˙̄S.

crystal c1 c2 c3 c4 c5 c6 c7 Φ∗

BCC 0.045 0.16 0.002 0.079 −0.122 −1.97 0.02 0.194
FCC 35.2 77.4 25.2 −70.5 292.2 −384.4 = 169.9 0.211
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pendent limit. The viscoplastic extension uses flow rule of the form

K−1K̇ = −1

ν

(
∂y

∂S
+Ω

)
, (2.241)

where ν is a material constant representing viscosity of plastic flow. Note that the rate
independent limit is ν → 0, which we achieve in practice by executing the algorithm in
(2.224). Also note that this extension is an example of a simple Perzyna-type overstress
model, see (2.98). For example, taking a stress dependent viscosity of the form ν = ν(S) and
generating constitutive equations from the methods in §2.3.3.1 would be another admissible
formulation of the model mentioned in (2.98).

In (2.241), the yield condition y(S) is the same as for the rate independent case; the
calibrated parameters from Table 2.3 are used. The axial deformation in (2.222) at different
deformation rates can be characterized by the fixed parameter ṡ. In Figure 2.11, the axial
(e1) stress behavior as a function of the ratio of the extension rate ṡ to the material viscosity
ν is plotted. As the viscosity ν decreases, the rate independent limit is reached. As an
important point, Figure 2.11 shows that the assumptions of small elastic strain in (2.107)
may not be satisfied for certain material viscosities or for sufficiently high rates of loading. In
the rate independent case, there is a natural restriction to stress states to be within the elastic
region defined by y(S) ≤ 0, see (2.103). However in the overstress model of (2.241), there is
no restriction of stress states to the elastic region. Therefore with viscoplastic simulations
the strains should be checked to make sure that the conditions presumed to be valid in the
theoretical construction are indeed still valid; in this case, that elastic strains are small < 1%.
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Figure 2.9: Inverse pole figure for extension axis e1 with s ∈ [1, 1.1] in for extension and
s ∈ [1, 0.9] for compression, for BCC crystal. Blue and black circles are the crystal plasticity
prediction in extension, contraction resp.;red and purple crosses are the phenomenological
prediction in extension, contraction.
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Figure 2.10: Inverse pole figure for extension axis e1 up to s ∈ [1, 1.1] in extension and
s ∈ [1, 0.9] in contraction, for FCC crystal. Blue and black circles are the crystal plasticity
prediction in extension, contraction resp.; red and purple crosses are the phenomenological
prediction in extension, contraction.
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Figure 2.11: Material point simulations of the viscoplastic overstress model (2.98) with flow
rule (2.241). The figure indicates that elastic strains may not be small depending on the
material viscosity and/or rate of loading, thereby requiring use of (2.104). Such conditions
must be checked if simulation results are to be trusted.
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2.4.1.3 Discussion

In this section, constitutive functions requested by the phenomenological theory of §2.2 were
grounded in reality by calibrating against a prediction from a crystal plasticity model which
is regarded as experimental data. This calibration was constructed in recognition of the fact
that lattice deformation is measurable using X-ray diffraction, so a theory which predicts how
the lattice evolves can, in principle, be related to experimental observations6. We obtained
reasonable agreement with the crystal plasticity model. The BCC fit in Figure 2.9 was
qualitatively better than the FCC fit of Figure 2.10, in terms of matching the reorientation
behavior (see figure insets). One reason this may be is because the BCC crystal plasticity
model we were calibrating against had 24 slip systems, while the FCC model had 12 slip
systems, see Tables A.1, A.2. The increased number of slip systems to consider makes the
BCC model more isotropic in some sense.

One question we were curious in investigating was how the model would handle the
different reorientation behavior of FCC and BCC crystals. For example, according to crys-
tal plasticity, the point group symmetry of the crystal is largely irrelevant in determining
plastic flow; it is the space group symmetry determines the slip systems and the flow in
(2.229). Therefore, the plastic flow evolution for FCC and BCC crystals have seemingly
little in common from this viewpoint. However in classical phenomenological thinking, we
only require information about the point group symmetry of the material. Therefore the
distinction between BCC and FCC must come out in the constitutive equations; for the
same type of constitutive equation this must be evidenced in the numerical values of the ma-
terial parameters associated to the constitutive equation. This was indeed borne out in our
calibration, where we achieved reasonable matching of both FCC and BCC crystal plasticity
models with our seven parameter model, cy1, c

y
2, ymax, b

cube
11 , ccube1 , ccube2 , ccube3 . Interestingly, in

Table 2.4 the signs of the dominant parameters ccube1 , ccube2 are opposite one another, in terms
of sign, for the FCC and BCC cases. This is consistent with the crystal plasticity based
observation that the skew part of the flow rule differs between FCC and BCC crystals, see
Table A.1 and Table A.2 and note that ni

0(BCC)
∼= si0(FCC) and si0(BCC)

∼= ni
0(FCC), so

that (skw K−1K̇)BCC ≈ −(skw K−1K̇)FCC.
Clearly the phenomenological model cannot compete with the simple shear deformations

predicted by crystal plasticity in the simple material point simulation employed for cali-
bration in this paper. However as more complicated crystal plasticity models are proposed
to describe experimental observations the phenomenological model may prove to be more
attractive. In fact, viewed through the same lens as our phenomenological theory, crystal
plasticity has many more parameters: 3 for each sα0 ⊗nα

0 system note (‖sα0‖ = ‖nα
0‖ = 1, and

sα0 · nα
0 = 0), along with the two parameters γ̇0,m, for a total of 38 parameters for the FCC

model. The phenomenological theory here has seven parameters, which shows some promise
for improving the constitutive framework.

It is important to note that an open question is whether the best fit parameters are

6See Chapter 3 for a thorough treatment of this task from the experimental side of the equation.
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the best fit in a global or local sense of optimization. The phenomenological function for
Ω was surely among the simplest consistent with the core requirements of hexoctahedral
symmetry and the requirement Ω(S) = −Ω(−S). Even so, the four material parameters
available to the material, (bcube11 , ccube1 , ccube2 , ccube3 ), constitute a large parameter search space;
and there are no thermodynamic restrictions on these parameters which might otherwise
reduce the search region. As a preliminary effort to examine if there were effects of local
optimum, we tested various initial conditions, but did not observe any better parameter
combinations. However, this is not proof that there does not exist better parameter values.
Roughly speaking, the more parameters introduced into the phenomenological model in the
format suggested here, the more the question of whether an optimum value is a global vs local
maximum will arise. With more parameters included in the model, a more exhaustive genetic
algorithm is suggested. This is a general issue in constitutive parameter determination (Liu
and Han, 2003).

We also investigated other functional forms for the lattice reorientation Ω(S). For ex-
ample, the crystal plasticity flow rule has a lattice reorientation analogous to ours, with
Ω ≈ skw K−1K̇. In the crystal plasticity flow rule however, this is related to the symmetric
part of the flow, sym K−1K̇, through the shear rates γ̇. That is, both skew-symmetric and
symmetric parts of the flow K−1K̇ originate from one function, the so called hidden variable
γ (Rice, 1971). Inspired by this coupling, we attempted to fit parameters to reorientation
functions of the form

Ω = Ω̂

(
∂y

∂S

)
(2.242)

which uses the same constitutive framework as that resulting in (2.209), e.g. we simply repace
A → y,S. This was also used in a similar context for sheet metal plasticity by Cleja-Tigoiu
and Iancu (2011). No significant improvements in the ability to match the crystal plasticity
model with this form for Ω were observed upon executing the same fitting algorithm with
this modification. There was perhaps a modest < 5% improvement, judged by comparing
optimal residual values, which may or may not be significant. The slightly better matching
may simply be a symptom of the fact that the crystal plasticity model naturally encodes
such coupling, which may or may not be borne out in raw experimental data. Further study
of applications will judge whether such a reorientation function is to be preferred, but it has
a certain intrinsic appeal.

A final point to make is that the residuals used to calibrate the lattice reorientation in
(2.238) have a non-trivial dependence on the accuracy of the matching to the yield function.
That is, it is possible that our attention should be drawn to improving the yield function
fits of Figure 2.7 and Figure 2.8 instead of focusing on improving the lattice reorientation.
Higher order polynomials for the yield function have additional material constants and may
get better fits to experimental data. For that investigation to proceed, a good starting point
would be the publications like Soare and Barlat (2010), in regard to yield functions for sheet
metals. This community has developed the techniques to ensure that they obtain convex
yield surfaces.
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In order to facilitate initial studies, that is, to get estimates for the yield and lattice
reorientation functions, we recommend using the two stage estimation method employed in
this section. That is, first fit the yield function parameters using (2.233), and then the lattice
reorientation, (2.239). From these initial estimates, further refining both sets of parameters
simultaneously, in a global optimum search may be a useful framework to explore.

In the next section, we implement the model into plane strain simulations, in order to
examine predictions from the model. To our knowledge this constitutes the first attempt at
implementing classical models along the lines of Fox (1968) into simulations.

2.4.2 Plane strain simulations

In this section we solve for the motion of an elastic-plastic body according to the theory of
§2.2. We obtain χ(X, t),K(X, t) by numerically integrating the equation of motion (2.17),
along with the flow rule, (2.19). We test out the calibrated constitutive models from §2.4.1.2.
In this introduction we give a short overview of the numerical formulation of the problem.
Later we give details such as which particular constitutive functions were tested.

Overview of numerical formulation. To reduce computational resource requirements
we consider plane strain boundary value problems, so that

χ3(X, t) = X3 (2.243)

and
χα(X, t) = χα(X1, X2, t), α = 1, 2. (2.244)

These requirements imply that the deformation gradient F is of the form

F = ∇χ =

∂χ1/∂X1 ∂χ1/∂X2 0
∂χ2/∂X1 ∂χ2/∂X2 0

0 0 1

 . (2.245)

We also consider plastic deformation to be of the form

K(X, t) = K̂(X1, X2, t), (2.246)

and for simplicity take the restriction

K =

K11 K12 0
K21 K22 0
0 0 1

 . (2.247)

The lattice deformation is computed from F,K using (2.12), so that

H = FK = (∇χ)K. (2.248)
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In overview of the method, we discretize the material and time domain X, t and solve for the
correspondingly discretized functions χ(X, t),K(X, t). Then these fields can be integrated in
time using a simple forward Euler scheme. For example, we need the velocity of the material

χ̇ ≡ v(i) =
x(i+1) − x(i)

∆t
, (2.249)

from which the position field x is updated at the step (i+ 1), the acceleration

χ̈ = v̇(i) =
v(i+1) − v(i)

∆t
(2.250)

which updates the velocities v at the next step (i+ 1), by using the balance of linear mo-
mentum equation (2.17), and

K̇
(i)

=
K(i+1) −K(i)

∆t
(2.251)

is the evolution of the plastic deformation, which updates the plastic deformation using the
flow rule (2.19). Taking (2.249), (2.250), (2.251) we have the staggered update equations
Herrmann and Bertholf (1983)

x(i+1) = v(i+1)∆t+ x(i) (2.252)

v̇(i+1) =
1

ρ0

(
DivP(H,K)(i) + ρ0b

(i)
)
∆t+ v̇(i) (2.253)

K(i+1) = K̇
(i)
∆t+K(i), (2.254)

where P(H,K) and K̇ are given by constitutive functions which are given later. We now
describe the discretization scheme employed in this study, which is an explicit Lagrangian
framework. Literature discussions of the method can be found in the reviews (Herrmann
and Bertholf, 1983; Silling, 1988). For completeness we describe our take on the method
here; for other details consult Herrmann and Bertholf (1983); Silling (1988).

2.4.2.1 Computational grid and data storage

The computational grid used in the solution of Equations 2.252 to 2.254 is described in
this section. Discretization of the material domain is performed; the nodes of subsequent
domain carry information on x,v, or more simply, the function χ(X, t). Zonal values carry
information on the deformation gradient and plastic deformation, F,K, and hence the lat-
tice deformation and stress response H,P. The proposed computational grid is shown in
Figure 2.12, the solid dots are the nodes, and the rectangular regions are the zones. On the
left side of the figure is the fixed material domain where computation is performed. Under
the motion χ the rectangular grid in the material domain gets distorted as shown on the
right side of the figure.
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Our consideration of plane strain (2.244) allows the use of Green’s theorem in the plane
to relate nodal values χ to zonal values F in a manner consistent with the discretization,
We now describe in detail how we compute the quantities F,DivP, ξ, which enter into the
formulation.

c

N

dX

c( , )X t
X

F, K, H, P x  v,

Figure 2.12: Illustration of the computational grid for the plane strain simulations. The
nodes store position and velocity, x,v, while zones store F,K, and hence H,P. Since ξ may
be used in the yield function, it needs to be determined on the zones as well.

Determination of F. The gradient of the material motion F = ∇χ is given by

F =
1

A

∫
Ω

∇χdA =
1

A

∫
∂Ω

χ⊗NdA, (2.255)

where F is the zone volume averaged deformation gradient over Ω, N is the normal vector
in the fixed material reference configuration, set by the initial discretization of the material
domain. We have used Green’s theorem in the plane to arrive at (2.255)2. The zonal area A
is obtained by Gaussian quadrature over the reference discretization of the material domain,
see §A.4 for further information.

In Figure 2.13 is illustrated the method used to obtain F from the nodal data of χ. The
boundary of a zonal region, ∂Ω, is indicated by the solid dark line. The local nodal points
are labeled 0, 1, 2, 3 in a counterclockwise ordering. The mapped region χ(Ω) is shown on the
right hand side of the figure, with the values of χ at the local nodes indicated. Integration of
χ⊗N over the boundary ∂Ω with nodal locations 0, 1, 2, 3 is accomplished by decomposition
along each edge, e.g.∫

∂Ω

χ⊗N =

∫
0,1

χ⊗NdA+

∫
1,2

χ⊗NdA+

∫
2,3

χ⊗NdA+

∫
3,0

χ⊗NdA. (2.256)
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Figure 2.13: Computational grid, highlighting the integration curve used for obtaining the
zonal value of F.

For illustration, take one term from the right hand side of (2.256). We have∫
0,1

χ⊗NdA =

∫
0,1

χ(s)⊗Nds, (2.257)

where the area integral is reduced to the form dA = 1 · ds from the imposition of plane
strain, and along the edge 0, 1 we have the linear approximation

χ(s) = χ(0) + (χ(1) − χ(0))s, (2.258)

where χ(0) is the value of χ at local node 0 and χ(1) is the value of χ at local node 1, see
Figure 2.13. Using (2.258) in (2.257) gives∫

0,1

χ⊗NdA = χ(0)s+ (χ(1) − χ(0))
s2

2

∣∣∣∣1
0

⊗N0,1 (2.259)

= χ(0) + (χ(1) − χ(0))
1

2
⊗N0,1 (2.260)

=
1

2
(χ(0) + χ(1))⊗N0,1, (2.261)

where N0,1 is fixed based on the initial discretization of the material reference configuration.
It can be computed from

N0,1 = (X(1) −X(0))× e3/‖(X(1) −X(0))× e3‖. (2.262)
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Therefore we can compute F on the zonal data structure. Like F, the plastic deformation
K is stored on the zonal data structure. Hence, so is H = FK, the lattice deformation.

Determination of DivP. The divergence of the stress at the nodal locations is obtained
by using the sequence

(DivP)node =
1

A

∫
Ω

DivPdA =
1

A

∫
∂Ω

PNdA, (2.263)

where we have again used Green’s theorem in arriving at (2.263)2. To compute the integration
of (2.263)2, we employ a similar decomposition as in (2.256), although with a different local
numbering scheme, as shown in Figure 2.14. Taking one term to illustrate, we have∫

0,1

PNdA =

∫
0,1

P(s)⊗N(s)ds, (2.264)

with P(s) = P0,1 = P̂(H0,1,K(0,1)) given by a constitutive equation, (2.39), and N(s) = N0,1

is computed as in (2.262). Figure 2.14 illustrates the described integration procedure. The
solid red line is the boundary ∂Ω, with local nodes labeled 0, 1, 2, 3 in counterclockwise order.
The nodal points X(0),X(1) are indicated in the figure. The required normal vector N0,1 is
also shown. The result of the integration is the vector DivP, shown at the center of the
integration region. This nodal force is coupled to the nodal acceleration through the equation
of motion, (2.253).

From (2.253) we also require nodal densities, which are defined on the zones. The nodal
density in (2.253) is obtained from the equation

A(ρ0)node =
1

4
(A0,1ρ0,1 + A1,2ρ1,2 + A2,3ρ2,3 + A3,0ρ3,0), (2.265)

where A is obtained from the methods of §A.4 for the stencil shown in Figure 2.14, ρi,j are
the (fixed) material densities in the zonal area, and Ai,j are the zonal areas obtained from
the stencil in Figure 2.13.

Determination of ξ. Finally, we consider the dislocation content ξ, (2.16), which is
reprinted here for convenience

ξ = JKK
−1CurlK−1. (2.266)

The computation of ξ is new in the plasticity literature, see Lele and Anand (2009) for a
version of this for isotropic materials using ABAQUS. We seek to directly incorporate ξ
derived from the plastic deformation field into hardening phenomenology, see §2.3.3.1, which
to our knowledge is a new effort.

In the present numerical framework, ξ is obtained by considering the Cartesian compo-
nent expressions

K−1 = (K−1)ijei ⊗ ej,
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Figure 2.14: Computational grid for DivP. The solid line shows the integration region used
to obtain the vector DivP at the required node location.

∇×K−1 = (K−1)ij,kei ⊗ ej × ek

= εjkm(K
−1)ij,kei ⊗ em. (2.267)

For the plane strain case under consideration given by Equation (2.247), (2.267) simplifies
to

∇×K−1 = (K−1)i1,2ei ⊗ e3 − (K−1)i2,1ei ⊗ e3

= [(K−1)11,2 − (K−1)12,1]e1 ⊗ e3 + [(K−1)21,2 − (K−1)22,1]e2 ⊗ e3. (2.268)

This quantity can be computed for the present numerical grid in the following manner.
Consider Stokes’ theorem, ∫

A

n · ∇ × v =

∫
∂A

v · dl, (2.269)

where l is the tangent vector to the boundary ∂A. We wish to apply the theorem to K−1.
Therefore take v = (K−1)Ta, for a a constant vector. Then Stokes’ theorem reads∫

A

n · ∇ ×K−Ta =

∫
∂A

K−Ta · dl. (2.270)
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Since a is constant, the right hand side is written∫
∂A

K−Ta · dl = a ·
∫
∂A

K−1 · dl, (2.271)

which can be computed with our computational grid using techniques similar to those already
employed. The left hand side of (2.270) is written in components as∫

A

n · ∇ ×K−Ta =

∫
A

εijk∂i(K
−1)mjamnkdA

= a ·
∫
A

εijk∂i(K
−1)mjnkemdA. (2.272)

For the plane strain case, the normal n in Stokes’ theorem is n = e3, so (2.272) becomes

a ·
∫
A

εijk∂i(K
−1)mjnkdAem = a ·

∫
A

[
εij3∂i(K

−1)mjem
]
dA. (2.273)

The quantity in brackets on the right hand side is expanded out as

εij3∂i(K
−1)mjem = ∂1(K

−1)12e1 + ∂1(K
−1)22e2 − ∂2(K

−1)11e1 − ∂2(K
−1)21e2

= [∂1(K
−1)12 − ∂2(K

−1)11]e1 + [∂1(K
−1)22 − ∂2(K

−1)21]e2, (2.274)

a vector whose components are the required quantity in the expression for ∇ × K−1, in
(2.268). Therefore (2.274) and (2.268), along with (2.273), (2.272), and (2.270), (2.271) we
have

1

A

∫
∂A

K−1 · dl = −(∇×K−1)13e1 − (∇×K−1)23e2, (2.275)

where ∇×K−1 represents the area average of ∇×K−1 on the left hand side of (2.270), and
the factor 1/A comes from pulling out this area average from (2.270).

We now compute the left hand side of (2.275). We integrate piecewise around the loop
depicted in Figure 2.15 in a fashion again similar to (2.256). A single term of which is written∫

0,1

K−1 · dl =
∫
0,1

K−1(s) · dl, (2.276)

where in this equation K−1(s) = K−1
0,1 and dl = (X(1) −X(0))ds. The net result of one piece

of the integration is ∫
0,1

K−1 · dl = K−1
0,1 · (X(1) −X(0)). (2.277)

Repeating (2.277) for the other integration segments gives the nodal values of ∇×K−1.
The computational stencil is illustrated in Figure 2.15, which shows the integration region
in solid red line, with one element dX0,1 = X(1)−X(0). The vector ∇×K−1 is shown at the
center of the integration region. The values of ξ at the zones are found by integrating the
nodal values of ξ in the manner of §A.4, which results in a simple numerical average of the
nodal values for ξ.
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Figure 2.15: Computational grid for ∇ × K−1, which is required for computing ξ, the
dislocation content.

Summary. In this section we have described how to obtain the required terms in the state
update equations (2.252), (2.253) according to our simple discretization approach. To recap,
the deformation gradient at the zones is obtained from (2.255), which incorporates the nodal
quantities χ. The lattice deformation H is obtained from F along with the zonal values of K,
through H = FK, (2.248). The Piola stress P is obtained from (2.39) which requires H,K
and an assigned strain energy function. The divergence of the Piola stress is given at the
nodes by (2.263), which couples to the evolution of the nodal data χ through (2.253). The
plastic deformation is updated from (2.254) through the flow rule. We have mentioned two
methods of updating the plastic deformation. For the rate independent constitutive model,
described in §2.2.3.2.1, (2.104), the plastic deformation flow rule is integrated by solving
the equations (2.224), with the additional constraint that K(i+1) is of the form (2.247).
Therefore, for the plane strain case under consideration Equation (2.224) represents five
equations for the five unknowns λ, (K−1)11, (K

−1)12, (K
−1)21, (K

−1)22. The viscoplastic rate
dependent model is described in (2.241), which does not require the solution of a set of
nonlinear equations.

This completes the explanation of the numerical discretization algorithm. The theory
requires the specification of the initial values for K(X, t), as discussed in §2.2.1. In the next
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section, we give an account of the algorithm used to generate these simple microstructures.

2.4.2.1.1 Microstructure generation algorithm In this section we describe the al-
gorithm used to seed the plane strain simulations with initial grain orientations. The initial
microstructure will be an interesting parameter to consider when examining the results of
the simulations. Classical experimental observations including the Bauschinger effect and
Hall-Petch relation may be sensitive to such microstructural details. Different initial grain
orientations sets up elastic anisotropy, which causes strain localization phenomena.

To define the microstructure, we require initial values for the plastic deformation field
at time t = t0. In an X-ray diffraction experiment, the reference material configuration is
defined to be the observed configuration - so that F(t = t0) = I. Therefore (2.12) implies
K(t = t0) = H(t = t0). For small elastic strains, H ≈ R, for R ∈ SO(3,R), where in experi-
ments H is determined by X-ray diffraction. In recognition of the experimental realities, we
seed our numerical simulations with K(t = t0) ∈ SO(3,R). The following prescription for
generating the microstructure is simple and is easily generated with pseudorandom numbers,
so that Monte Carlo simulations may be performed over ensembles of microstructures, if so
desired.

Given a spatial region parametrized by coordinates x which we wish to fill with crystals,
we first generate an array of random locations in the mesh, {x(i) : i = 1, 2, ..., Ngrains}, which
represent the grain center positions. We also assign random orientations

A = {θ(i) : i = 1, 2, ..., Ngrains} (2.278)

to these locations by using the one dimensional orientation parametrization

K0(θ) = R̂(e3, θ), (2.279)

where the axis of rotation e3 is the out of plane direction. Finally, we assign random sizes
(according to a specified distribution function) to the locations, which represents something
akin to the grain diameters, D, so that we generate the set

B = {D(i) : i = 1, 2, ..., Ngrains}. (2.280)

The sizes are incorporated into matrices which represent a distance metric gij, so that we
write

[g
(i)
kl (D

(i))] =

[
D(i) 0
0 D(i)

]
. (2.281)

The isotropic metric in (2.281) can be modified to be anisotropic (g11 6= g22, for example).
Non isotropic metrics might be used if elongated grains are known to exist, or if experiments
can give such information. Finally, the initial microstructural data is expressed by the set

C = {(x, θ,D, gkl(D))(i) : i = 1, 2, ..., Ngrains}. (2.282)
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Given the seed data, C, the algorithm to specify the rest of the microstructure is given as
follows. For each zone in the mesh, with center position xzone, compute the ’closest’ seed
point and give that zone the orientation, θ, corresponding to that closest seed point. Here
‘closeness’, denoted δ, is determined by the distance metric to the seed point, written

δ(i) ≡ g
(i)
kl (xzone − x(i))k(xzone − x(i))l. (2.283)

The minimum distance is then given by

min δ ≡ min{g(i)kl (xzone − x(i))k(xzone − x(i))l : i = 1, 2, ..., Ngrains}, (2.284)

so that θ(xzone) = θ∗, where θ∗ is the orientation of the closest seed point, determined by
(2.284). Carrying out this procedure for all zones in the mesh completes the assignment of
the initial plastic deformation, K(t = t0). An example microstructure generated from this
procedure is shown in Figure 2.16.

Figure 2.16: Microstructure generated by the algorithm described in the text leading to
(2.284). The K11(0) component is visualized by the colormap.

2.4.2.2 Boundary value problems

We tested the numerical method in several simple boundary value problems. We used a
square material domain, as shown in Figure 2.16 to perform the tests. In this section we
describe the variety of boundary conditions imposed to the material, the exact constitutive
equations used, and two methods of implementing hardening phenomenology.
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2.4.2.2.1 Boundary conditions The boundary conditions used were one of the follow-
ing

1. Extension - contraction cycles

2. Axial extension

3. Simple shear

4. Shock contraction

The axial extension, extension-contraction, and shock contraction boundary conditions were
simulated by prescribing nodal velocities on the right hand edge, see Figure 2.17. The
horizontal velocity v1 on the left hand edge nodes was set to zero, while the velocity v2 on
the same edge was not fixed by boundary conditions. In other words, this is a roller type
boundary condition. We also experimented with fixed placement boundary conditions on
the left hand edge. The top and bottom boundaries were traction free. Surface tractions, if
desired, would be implemented into the nodal force balance equations of (2.253), as described
by Silling (1988).

v  > 0xfree

free

v = 0x

Figure 2.17: Illustration of typical boundary conditions for the plane strain simulations. The
horizontal velocity was prescribed on the left and right boundaries; on the left it is zero, on
the right it is generally non-zero.

The extension-contraction cycles were constructed to investigate work hardening phe-
nomenology, which is described in the next paragraph. An example right hand edge velocity
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cycle is shown in Figure 2.18. The difference between the axial extension and shock con-
traction boundary conditions is simply one of time-scale: boundary velocities for the shock
contraction condition were high in comparison to the elastic wave speed of the material. We
tested both single crystals and polycrystalline domains using the microstructure generation
of §2.4.2.1.1.

Figure 2.18: Right edge boundary condition for e1 component of boundary nodal velocity.
This boundary condition was used to investigate the effect of different constitutive relations
for hardening phenomenology.

2.4.2.2.2 Constitutive equations

Stress response The constitutive formulation requires the stress response from (2.39),
(2.40) and (2.190). Therefore for hexoctahedral cubic crystals there are three elastic con-
stants. The elastic constants are normally presented based on the Voigt form

SI = CIJEJ , (2.285)
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where (EI) = (E11, E22, E33, 2E23, 2E13, 2E12) and SI = (S11, S22, S33, S23, S13, S12), and
where CIJ is a matrix of elastic constants given by

CIJ =


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

sym C66

 . (2.286)

For hexoctahedral symmetry, we have

C11 = C22 = C33,

C12 = C13 = C23

C14 = C15 = C16 = C24 = C25 = C26 = C34 = C35 = C36 = C45 = C46 = C56 = 0,

and
C44 = C55 = C66.

The Piola stress in the lattice configuration is given by evaluating

PH = HS, (2.287)

with S given by (2.285). Equation (2.39) then gives the stress response for use in the equation
of motion, (2.253). The values for the elastic constants were taken as C11 = 226 GPa, C12 =
140 GPa, C44 = 116 GPa, which are representative of iron (BCC).

Plastic response. For plasticity equations, we need equations for the yield function y
and lattice reorientation, Ω. The yield function is obtained from (2.196), with calibrated
parameters Table 2.3. We also tested hardening relations based on (2.216). In particular we
report on isotropic hardening relations of the form

y(S, ξ) = y(S)− ymax(1 + kiso‖ξ‖)A3 , (2.288)

where kiso ∈ R has the dimensions of L, and the parameter A3 is modified in our parameter
investigations. Here y is the quadratic polynomial presented in (2.202). Equation (2.288) is
of the form (2.216) with χ(ξ) = 0 and h(ξ) = ymax(1 + kiso‖ξ‖)A3 .

We also used the plastic work to account for hardening phenomenology (Malvern, 1969;
Dowling, 1999), which is computed from

Wp =

∫
Ddt, (2.289)
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where D = −S · K−1K̇ is the dissipation, see (2.47), since E ′ ≈ −S for the small elastic
strain model. Then we use yield functions of the form

y(S,Wp) = y(S)− ymax(1 + kpWp)
A3 , (2.290)

where kp has dimensions of Energy−1. The form of (2.290) is in recognition of the fact that ξ
does not capture all dislocation content, and there are statistically stored dislocations below
the length scale revealed by the integration loop of (2.275).

Finally, the lattice reorientation function we used is taken from Equations (2.209), (2.210)
and (2.211), which represent the cubic order spin Ω = Ω(S). Calibrated constitutive pa-
rameters are from Table 2.4. We used the BCC model results from the table for both lattice
spin and yield function.

2.4.2.3 Results

In this section we discuss the results from the plane strain simulations for the boundary
conditions and constitutive formulations described in the previous section.

2.4.2.3.1 Extension-contraction cycling In this section we give the results from the
cyclic loading tests. In Figure 2.19 is shown the initial microstructure of a polycrystal at a
10× 10 grid resolution. The component K11(t = 0) is visualized by the colormap. We tested
the velocity cycling program specified in Figure 2.18 to this microstructure, and tested the
hardening relations (2.288) and (2.290). The rate independent plastic flow model, (2.224),
was used, with the reorientation function of (2.205).

Figure 2.19: Initial microstructure for cyclic tests. 10× 10 grid.

Effect of ξ. Due to the nature of the computation of ξ, the grain boundaries of Fig-
ure 2.19 are equivalent to high concentrations of geometrically necessary dislocations. The
representative visualization of ξ-concentration is shown in Figure 2.20 which plots ‖ξ‖ in
the colormap. Comparing this to Figure 2.19 clearly shows the correlation between grain
boundaries and the computed ‖ξ‖ using Equation (2.275). In Figure 2.21 the value of ‖K‖ is
visualized at the same stage of deformation, for the values A3 = 0, 0.1, 0.5 from left to right.
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The influence of the parameter A3 on the plastic deformation is clearly evident based on the
relative locations of plastic deformation from these figures. For example, in Figure 2.21(a)
plastic deformation is heterogeneous, but evenly distributed throughout the polycrystal. In
Figure 2.21(b), for A3 = 0.1, plastic deformation is isolated in a band which passes through
the large grain in Figure 2.19, without crossing grain boundaries. In Figure 2.21(c), sim-
ilar behavior is seen. To examine the influence of hardening on stress strain hysteresis,

Figure 2.20: Initial picture of ‖ξ‖2 for the microstructure of Figure 2.19. Grain boundaries
serve as high dislocation density sites using the numerical stencil of (2.275).

(a) Plot of ‖K‖ for the case A3 =
0 in (2.288). Plastic deformation
is heterogeneous but evenly dis-
tributed in the polycrystal.

(b) Plot of ‖K‖ during plastic
flow, for A3 = 0.1. The plastic
deformation is localized to a re-
gion with low ξ content, see Fig-
ure 2.20.

(c) Plot of ‖K‖ during plastic
flow, for A3 = 0.5. The plastic
deformation is localized to a re-
gion with low ξ content, see Fig-
ure 2.20.

Figure 2.21: Images of ‖K‖ for various exponents A3 in Equation (2.288).

a measure of the total force on the right hand boundary is shown in Figures 2.22 to 2.24
for the cases A3 = 0, 0.1, 0.5, respectively. This force quantity is plotted to get an idea of
the axial stress response. From these figures, the hardening behavior induced by the model
(2.288) is not very strong. Most of the determination of the yield is dominated by the initial
microstructure; deformation dependent hardening is largely absent.

Next we examine similar data using the plastic work-based hardening of Equation (2.290).
In Figures 2.25 - 2.27 are shown the axial stress vs. axial stretch for the microstructure shown
in Figure 2.19. The yield function used was (2.290), with hardening exponent A3 = 1, 3, 10
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Figure 2.22: Plot of axial stress vs. extension for the microstructure shown in Figure 2.19.
The yield function used was (2.288). The hardening parameter was A3 = 0. There is no
hardening effect.

respectively in the figures. Qualitative agreement with notions of isotropic hardening are
good with the hardening model, better than for (2.288). Finally, in Figure 2.28, the same
cyclic test is performed for the rate dependent model, (2.241), with viscosity ν = 2.5 ·
10−4GPa−1 · s. The mesh is refined from 10× 10 to 40× 40 to 50× 50. Convergence of the
integrated stress vs. stretch relation is rapid.

Next, in Figures 2.29 - 2.33 are the hysteresis plots for the 11 -parameter lattice reori-
entation model of (2.186), Ω = Ω(S, Ṡ) from (2.205). Figures 2.29 - 2.30 used (2.288),
and Figures 2.31 - 2.33 used (2.290). Although calibrated in the same fashion as Ω(S),
there is a bias towards certain lattice reorientation, evidenced by the changing slope in the
load extension curve. This indicates that there is a net reorientation in the crystal upon
tension and compression cycling, since anisotropic elasticity causes a resulting change in
stress-strain slope. This serves as further justification that reorientation functions of the
form Ω = Ω(S, Ṡ) should be used with caution, if at all, in applications.



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 100

Figure 2.23: Plot of axial stress vs. extension for the microstructure shown in Figure 2.19.
The yield function used was (2.288). The hardening parameter was A3 = 0.1. The isotropic
hardening effect is not modeled as well as for Equation (2.290).

Figure 2.24: Plot of axial stress vs. extension for the microstructure shown in Figure 2.19.
The yield function used was (2.288). The hardening parameter was A3 = 0.5. The isotropic
hardening effect is not modeled as well as for Equation (2.290), there is only a dependence
on the initial yield point as the exponent increases.
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Figure 2.25: Plot of axial stress vs. axial stretch, for the microstructure shown in Figure 2.19.
The yield function was (2.290). The hardening parameter was A3 = 1. A small amount of
isotropic hardening is evident.

Figure 2.26: Plot of axial stress vs. axial stretch, for the microstructure shown in Figure 2.19.
The yield function was (2.290). The hardening parameter was A3 = 3. A larger amount of
isotropic hardening than for Figure 2.25 is evident.
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Figure 2.27: Plot of axial stress vs. axial stretch, for the microstructure shown in Figure 2.19.
The yield function was (2.290). The hardening parameter was A3 = 10. The increase in
isotropic hardening is clearly monotonic with A3, by comparing Figures 2.25, 2.26.

Figure 2.28: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
for several mesh resolutions. The yield function was (2.290). A rate dependent model was
used. The parameter A3 = 10. Convergence of the macroscopic stress vs. stretch is rapid.
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Figure 2.29: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), Ω = Ω(S, Ṡ). The yield function was (2.288).
The parameter A3 = 0.

Figure 2.30: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), Ω = Ω(S, Ṡ). The yield function was (2.288).
The parameter A3 = 0.1.
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Figure 2.31: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), Ω = Ω(S, Ṡ). The yield function was (2.290).
The parameter A3 = 1.

Figure 2.32: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), Ω = Ω(S, Ṡ). The yield function was (2.290).
The parameter A3 = 3.
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Figure 2.33: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), Ω = Ω(S, Ṡ). The yield function was (2.290).
The parameter A3 = 10. The simulation failed to integrate the rate independent equations
at the final point in the simulation.
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(a) y(S), 48× 48 mesh (b) ‖K‖, 48× 48 mesh (c) ‖K‖, 30× 60 mesh

Figure 2.34: On the left, the color map is of y(S) near the beginning stage of deformation.
The lightened pixel indicates where the material has been weakened by changing the value
of ymax. The right two figures are a comparison of ‖K‖ for 48× 48 mesh along side a 30× 60
mesh. The location and orientation of the localization band is the same for both cases.

2.4.2.3.2 Investigation of mesh dependence Based on statements by Silling (1988),
we were interested in investigating the effect of mesh dependence on simulation results.
Silling (1988) stated that results regarding, for example, localization bands can be mesh
geometry dependent if there is not a strong localization effect in the model. His context was
not precisely the present one, but it is close enough to presume that similar observations apply
to our physics. To examine mesh dependence, we constructed a mesh where the material is
weakened in a particular zone Ω∗ by setting ymax(Ω

∗) < ymax. Recall that ymax is the nominal
yield parameter in Equations (2.288), (2.290), which are of the form y(S) = y′(S) − ymax.
The microstructure was a constant lattice orientation of θ = 20◦, see (2.279). The boundary
conditions were of the axial extension nature, velocity prescribed on right edge, traction free
top and bottom. In Figure 2.34 is shown the value of y(S) for an early stage of deformation
on the left; the right two figures are plots of ‖K‖ at identical stage of deformation. The
center figure is a 48 × 48 mesh, the right figure is a 30 × 60 mesh. The orientation of
the localization band in the figures is the same in both cases, giving some comfort in the
predictions from the numerical framework.
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Next, in order to investigate the issues of convergence we tested the same weakened
material in 12×12, 24×24, and48×48 mesh resolutions. We again used θ0 = 20◦, and used the
rate dependent model with ν = 0.0003 GPa−1·s. We used the yield function based on (2.288),
which incorporates ξ into the hardening. In Figures 2.35 - 2.41, 2.42 - 2.48 are plotted ‖K‖,
‖ξ‖2 respectively for a hardening exponent A3 = 0, representing no hardening. In Figures
2.49 - 2.55, 2.56 - 2.62 are the same displayed data, at the same stages in deformation,
but with A3 = 0.1. In the captions of these figures, the parameter ‘hardeningmode’ refers
to the use of either plastic work hardening, Equation (2.290) (hardeningmode = 0), or ξ-
based hardening, (2.288) (hardeningmode = 1). This designation of ‘hardeningmode’ will
be in effect for the rest of the document. The addition of the hardening exponent in the
simulations appears to give better convergence properties. Since the viscoplastic model was
used, elastic strain should be checked for compliance with the small elastic strain theory; this
was indeed the case for these quasistatic simulations. Other examples from these simulations
for different grain orientations are given in the appendix.
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.35: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =0

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.36: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =1

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.37: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =2
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.38: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =3

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.39: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =4

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.40: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =5
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.41: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =6
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.42: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =0

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.43: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =1

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.44: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =2
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.45: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =3

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.46: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =4

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.47: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =5
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.48: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number =6
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.49: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=0

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.50: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=1

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.51: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=2
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.52: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=3

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.53: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=4

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.54: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=5
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.55: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖K‖ A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=6
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.56: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=0

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.57: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=1

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.58: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=2
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.59: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=3

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.60: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=4

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.61: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=5
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure 2.62: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ‖ξ‖2 A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 20, sequence number
=6
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2.4.2.3.3 Shock contraction Next, we simulate a high velocity impact loading on a
single crystal. The crystal is oriented at θ0 = 10◦. The boundary conditions are the same as
for the previous simulations, except the horizontal velocity is amplified to be on the order of
the elastic wave speed. Additionally, the duration of this velocity pulse is short, after which
the right edge becomes traction free. The time step is dropped to a level where dynamic
behavior is accurately captured. In the following images the rate independent flow rule is
used, based on (2.205). In Figure 2.63 and Figure 2.64 is shown the pressure, tr S, at several
time steps. In Figure 2.65 and Figure 2.66 is shown the geometrically necessary dislocation
content, in the form ‖ξ‖2, at the same time steps as in Figure 2.63, Figure 2.64. In Figure 2.67
and Figure 2.68 is shown the plastic deformation in the form ||K||, again at the same time
steps. In applications, the ξ content can be measured with X-ray diffraction experiments
or the related EBSD. See Kysar et al. (2007) for recent experiments where geometrically
necessary dislocation content was measured. Therefore, if the shock loading were produced
experimentally, the sample could be post mordem sectioned and compared to simulations to
validate high strain rate constitutive behavior. Further examples of the shock contraction
boundary condition can be found in the appendix.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.63: Shock animation frames, color bar is the pressure, tr S. Incident pressure wave
propagation is depicted
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(a) (b)

(c) (d)

Figure 2.64: Shock animation frames (cont’d)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.65: Shock animation frames, color bar is a measure of the geometrically necessary
dislocation content, ||ξ||. Same frames as for the previous figure. The color map has been
modified to better visualize the fine scale structures.
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(a) (b)

(c) (d)

Figure 2.66: Shock animation frames, ||ξ|| (cont’d),
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(a) (b)

(c) (d)

(e) (f)

Figure 2.67: Shock animation frames, color bar is ||K||. Snapshots are at the same time as
the previous figures in this series. The color map has been modified to better visualize the
fine scale structures.
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(a) (b)

(c) (d)

Figure 2.68: Shock animation frames, ||K|| (cont’d)
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2.4.2.3.4 Shear deformation We also show results from shear boundary condition.
The nodal velocity on the right is set in the vertical e2 direction, with the same cycling as in
Figure 2.18. The top and bottom boundaries are traction free, and the left edge is fixed. In
Figures 2.69-2.72 are shown the results for several initial orientations of θ0, with A3 = 0.1,
with ‖ξ‖2 plotted in the colormap. The localization of plastic flow is evident due to the
boundary conditions at the edges. In Figures 2.73-2.76 the same simulation is plotted with
‖K‖ shown.
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(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure 2.69: Comparison of θ-dependence for shear boundary condition. The colormap shows
‖ξ‖2. A3 = 0.1, ν = 0.0010, hardening mode=1, θ0 = 45, sequence number = 0

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure 2.70: Comparison of θ-dependence for shear boundary condition. The colormap shows
‖ξ‖2. A3 = 0.1, ν = 0.0010, hardening mode=1, θ0 = 45, sequence number = 1

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure 2.71: Comparison of θ-dependence for shear boundary condition. The colormap shows
‖ξ‖2. A3 = 0.1, ν = 0.0010, hardening mode=1, θ0 = 45, sequence number = 2

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure 2.72: Comparison of θ-dependence for shear boundary condition. The colormap shows
‖ξ‖2. A3 = 0.1, ν = 0.0010, hardening mode=1, θ0 = 45, sequence number = 3
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(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure 2.73: Comparison of θ-dependence for shear boundary condition. The colormap shows
‖K‖. A3 = 0.1, ν = 0.0010, hardening mode=1, θ0 = 45, sequence number = 0

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure 2.74: Comparison of θ-dependence for shear boundary condition. The colormap shows
‖K‖. A3 = 0.1, ν = 0.0010, hardening mode=1, θ0 = 45, sequence number = 1

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure 2.75: Comparison of θ-dependence for shear boundary condition. The colormap shows
‖K‖. A3 = 0.1, ν = 0.0010, hardening mode=1, θ0 = 45, sequence number = 2

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure 2.76: Comparison of θ-dependence for shear boundary condition. The colormap shows
‖K‖. A3 = 0.1, ν = 0.0010, hardening mode=1, θ0 = 45, sequence number = 3
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2.4.2.4 Discussion

We now summarize and discuss the results from these simulations. First, the results of
§2.4.2.3.1 indicated several things. (1) plastic work hardening based on (2.290) gives better
isotropic hardening phenomenology than hardening based on ξ, (2.288), and (2) reorientation
functions of the form Ω(S) in the flow rule (2.205) should definitely be preferred to functions
of the form Ω(S, Ṡ) of (2.110), unless experiments otherwise dictate. This is because the
reorientation behavior of the net material using (2.110) were not equal and opposite in
extension-contraction simulations, thus leading to a changing slope of the elastic region due
to the anisotropic crystal structure.

Second, we performed simulations based on weakening the material in a fixed location.
This caused plastic deformation to be localized in a consistent region with out mesh depen-
dent effects entering in. Convergence upon mesh refinement was qualitatively better when
imposing a parameter of A3 ≥ 0.1 in the ξ-based yield function of (2.288), rather than hav-
ing no such hardening. Further study of the implications of well known convergence issues
of localization phenomena in plasticity, as they pertain to the current model, is required.

On the positive side, the deformation bands in e.g. Figure 2.34 and following images
is reminiscent of experimental images such as Figure 2.77 from Spitzig (1981) showing the
fracture pattern of Fe-Ti-Mn single crystals (BCC).

Figure 2.77: Fracture of Fe-Ti-Mn single crystal in qualitative agreement with Figure 2.34.
From (Spitzig, 1981). Reprinted with permission from Elsevier.

Thirdly, the notion of treating geometrically necessary dislocations at grain boundaries
in the same fashion as in a bulk crystal in this framework should be further analyzed. For
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instance, in the determination of ξ based on (2.275), the dimensions of ξ are on the order

ξ ∝ 1

A

∫
∂A

K−1 · dl ≈ 1

h
∆K−1 (2.291)

where h is a characteristic mesh dimension and ∆K−1 is some measure of the difference in
K−1 around the integration loop ∂A. At a grain boundary, ∆K−1 is fixed by the difference
in orientations, irrespective of the mesh resolution, and as h→ 0, ξ → ∞. In yield functions
based on (2.288), for a fixed ymax there will therefore be a mesh resolution at which no
plastic deformation is expected at grain boundaries. This numerical behavior may or may
not be a problem in practice. At worst, the elements on the boundary of the grains will
not achieve flow in the simulations, but adjacent ones certainly will. As h → 0, this lack
of flow at the exact boundary material becomes irrelevant. We don’t believe that treating
grain boundary based hardening in a different fashion than ξ seems physically appealing, as
hardening should only depend on local neighbors. Such a study of grain boundaries on yield
behavior may be crucial to developing simulations which predict phenomenological effects
such as the Hall-Petch effect (Lim et al., 2011) which relates polycrystalline yield strength
to the grain size diameter.

The numerical simulations developed here are probably most efficiently suited for the
shock contraction simulations, due to the retention of dynamics information. At large plastic
deformations, the Lagrangian mesh becomes distorted, and additional computational steps
which were beyond the current scope are required to prevent problems. For shocks however
the numerical performance was qualitatively excellent. We previously stated that plastic
deformations in the current theory can only be experimentally determined from an initial
state. In shock compression experiments, measuring in situ elastic and total material strain
as suggested for quasistatic experiments is far beyond current capabilities. However the
calculation of ξ can serve as an independent indicator of past plastic deformation. Given
an initially perfect crystal, after shock loading geometrically necessary dislocation content
can be deduced by post mordem analysis like EBSD or X-ray diffraction. High resolution
EBSD measurements are only recently becoming available (Kysar et al., 2007), but they
have the advantage of being more readily available than synchrotron sources. Therefore
the shock simulations and prediction of ξ from this work can be directly compared against
experimental data, even if K cannot. In our visualizations we have normally plotted ‖ξ‖2.
However we can also plot directly the Burgers vectors from the integration loop, compare
(2.13) and (2.275), shown in Figure 2.78. We were not able to discern any implications from
this type of data visualization, besides that the Burgers vectors typically collect in +/− pair
orientations instead of monotonically aligning in a certain direction.
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Figure 2.78: Burgers vectors, (2.13), from numerical simulation. The color map is based on
‖ξ‖2.
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2.5 Conclusion

In this chapter we have completed the specification of a proposed theory of elastic-plastic
deformation based on the model of Fox (1968). This model was infused with the maximum
dissipation postulate and applied to symmetry groups characteristic of single crystals. The
intended application of the model is identical to that the situations in which crystal plasticity
is used.

The differences between the formulations are most generally viewed as being of a con-
stitutive nature. The flow rule of crystal plasticity is given by (2.229), (2.230), whereas our
flow rule is given by (2.205) or (2.110). Crystal plasticity elegantly reduces to the single slip
theory based on observations from Taylor and Elam (1923). However it’s ability to predict
data in more complicated situations such as embedded grains in a polycrystal has not been
verified by available experimental methods. Based on the mechanics community’s past ex-
perience with other aspects of continuum physics, physically motivated theories have been
at times inadequate in comparison to experimental data (Treloar, 1974). Therefore until
the experimental investigation of plasticity becomes of a more quantitative than qualitative
nature, there will remain some uncertainty as to which plasticity formulations are success-
ful in certain situations. Even before that however, there are still many phenomenological
observations in plasticity which have not been adequately answered by current modeling
approaches, such as the Hall-Petch effect (Lim et al., 2011). For most engineering applica-
tions, macroscopic phenomenology is more important than the modeling methodology used
to obtain the answer; our approach still shows the ability to model strain localization and
geometrically necessary dislocations which was raised as a potential reason not to implement
such theories, in §2.1.4. Our view is that as long as theories remain true to the most funda-
mental principles of physics they should be investigated; which has not been the case for the
proposed formulation of single crystal plasticity. Therefore this model seeks to serve as a vi-
able alternative framework for such situations where crystal plasticity becomes cumbersome
to deal with or is found to be inadequate in capturing data.

The primary contribution in this chapter is the constitutive framework needed to complete
the theory and make predictions. Of the 32 crystallographic point groups, we focused on
the cubic class due to the importance of cubic crystals in engineering. For cubics, we found
examining polynomial integrity basis elements to be more attractive than using structural
tensors (Liu, 1982). We gave detailed examples of constitutive function generation, building
off of similar examples given in the literature (Green and Adkins, 1970; Spencer, 1971).
We obtained expressions for lattice reorientation as well as yield functions incorporating
hardening phenomenology. The hope is providing these examples makes the constitutive
framework more friendly to future investigation.

Lattice orientation is a fundamental observable in experimental plasticity using X-ray
diffraction; our theory seeks to make predictions of the orientation evolution due to plastic
flow. With this experimental situation in mind a simple extension experiment should be
sufficient to calibrate the model to experimental data. Such an experiment is feasible given
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proper resources but here we calibrated our constitutive equations for yield and plastic flow to
simulated data from a crystal plasticity model using a material point simulation of isochoric
extension.

The resulting constitutive model was implemented into plane strain simulations to in-
vestigate predictions from the theory in simple boundary value problems. We used an ex-
plicit Lagrangian numerical method (Herrmann and Bertholf, 1983; Silling, 1988) which was
straightforward to implement into code, gave a measurement of ξ, and proved to be gener-
ally useful for early investigations of the model. The simulations passed several consistency
checks, such as mesh dependence of strain localization bands and convergence of the solu-
tion. We learned several things about our plasticity model from these simulations. First,
we learned that rate independent reorientation function of (2.205) appears to be must more
attractive than that initially established in (2.110), since it assures that the lattice reorien-
tation direction reverses upon reversal of the load. This behavior is naturally encoded in
crystal plasticity flow rules. Second, we learned that flow localizations are naturally pre-
dicted in the model, giving some counter to the statement by Yang and Lee (1993) that
such microstructural information could not be deduced from phenomenological theories, see
§2.1.4, item number 3. The numerical method also gave predictions for geometrically nec-
essary dislocation content, ξ, which in this theory is derived based on the spatial gradients
in the plastic deformation field and not stored as an independent state variable. This in-
formation is only recently being incorporated into numerical simulations (Lele and Anand,
2009). Experimentalists have suggested that the development of ξ is responsible for many
phenomenological observations, the modeling of which is still open to improvements. The
present model may prove to be helpful in providing flexibility to constitutive frameworks in
the presence of such complexity.

In the next chapter we give a detailed treatment of the experimental method which is
naturally coupled to this model of plasticity - X-ray diffraction.
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Chapter 3

Experimental: X-ray Diffraction

Chapter overview. The major areas of scientific research work activity consist of the-
oretical development, numerical simulation, and experiments. In the previous chapter we
developed a theory for the plasticity of single crystals, and gave numerical predictions. This
chapter describes considerations associated with investigating the model experimentally.

Experiments serve two primary functions in research. One function is that experiments
enable the discovery of new behaviors and properties of materials. The second function is
that experiments provide the physical data needed to ground theoretical models in reality.
In particular, the values of material parameters in constitutive models cannot be obtained
without the input of experimental data at some stage. After obtaining such values, numerical
studies can be performed. This is useful because simulations are a cost-effective way to
inform design processes, for example. However, quite often the constitutive models required
by a given theory are left unfounded by experiment. This is particularly true, historically
speaking, for phenomenological continuum plasticity. In this situation, promising numerical
simulations have to be performed with unknown constitutive parameters (Papadopoulos and
Lu, 2001). In this chapter we seek to determine constitutive parameters for the theory in
Chapter 2 directly from experiments.

The experimental technique addressed in this chapter is high energy synchrotron X-
ray experimentation. This is a relative newcomer to the array of methods available for
experimentation (Poulsen et al., 1997). To date, much attention has been given to using the
experiments to make novel observations (Jakobsen et al., 2006), but little attention is given
to experiments where quantifiable information is derived. In this chapter we analyze the
data from some recent high energy X-ray diffraction experiments to determine constitutive
behaviors in materials of interest. We also give a thorough background to the method, to
serve as a reference for crossover researchers from mechanics to applied crystallography.
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3.1 Introduction

In the following sections we discuss theoretical and practical aspects of X-ray diffraction
experiments for analysis of the plasticity theory developed in Chapter 2. We provide a
thorough introduction to basic X-ray diffraction theory, so that researchers from a mechanics
background can use this as a concise translation between mechanics and crystallographic
notions and terminologies.

As noted in the introduction to this thesis, experimental investigation of plasticity the-
ories is challenging. Techniques to quantitatively validate theories of plasticity for length
scales at which crucial mechanical details purported to be modeled by the theory manifest
themselves simply do not exist or are not widely available. This is particularly true for the
investigation of polycrystalline behavior.

Although a synchrotron is not a common instrument to have available in a small research
lab (!), synchrotron X-ray diffraction is one of the most promising experimental tools avail-
able to investigate these theories. For example, the brilliance of modern third generation
synchrotron sources (Mills et al., 2005), in combination with improvement in hardware tech-
nology, has opened up the field to in situ testing at comparatively fine temporal resolutions
appropriate for quasistatic processes. This enables the quantitative study of interesting de-
formation processes or phase changes (Margulies et al., 2001; Larsen et al., 2004; Offerman
et al., 2006; Aydiner et al., 2009). Scans sufficient to characterize a polycrystal can now be
completed on time scales on the order of tens of seconds at Sector 1 of the Advanced Photon
Source, Argonne National Lab.

The core contributions of the following sections are summarized by three major points.
These are:

1. Advancing the community’s understanding of the quantitative capabilities of the high
energy X-ray diffraction technique by developing the analytical tools to estimate un-
certainty in the measurements.

2. Developing an improved modeling methodology to increase the amount of kinematic
information able to be deduced from X-ray diffraction data.

3. Using X-ray diffraction data from experiments on polycrystalline materials to extract
single crystal constitutive parameters.

To elaborate on (1): as we shall soon see, the output from X-ray diffraction measurements are
estimates of the lattice deformation with respect to the fixed reference configuration, which
we called H in Chapter 2. This is accomplished by measuring the locations of reciprocal
vectors, which are functions of the ambient lattice structure and the lattice deformation
H. At the high X-ray energies we will consider (50 -100 keV), the available resolution of
reciprocal space is poor. Therefore there is a relatively large degree of uncertainty associated
with the measurements of H. For constitutive determination, this uncertainty must be
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quantified in order to be a useful experimental tool. This uncertainty has not been quantified
before in the hierarchical framework we will propose later in this chapter.

On (2): In conventional methods of X-ray diffraction analysis, the principal output, H,
is assumed to be spatially homogeneous on a grain averaged basis. Associated with the
homogeneity assumption, each diffraction peak is assumed to represent a single location in
reciprocal space. This simplification is acceptable for many studies. However for plastically
deformed crystals, the diffraction peaks smear out as a symptom of the single crystal breaking
up - that is, the single crystal becomes spatially inhomogeneous. The diffraction technique
considered in this chapter cannot measure the lattice deformation state on the length scales
required to quantify this spatial inhomogeneity. However by projecting the inhomogeneity
into H-space, and forward modeling the diffraction pattern from this projection, we can
make deductions about the plastic deformation processes having occurred in the crystal.
This modeling approach adds to the list of capabilities of the X-ray diffraction technique,
increasing the profitability of pursuing such experiments.

For (3): we first motivate why single crystal properties are of interest, since polycrys-
talline materials are the materials most often encountered in applications. Polycrystals typ-
ically have better mechanical properties than a single crystal of the same material, have less
anisotropy, and are easier and cheaper to produce. Clearly, accurate prediction of polycrys-
talline behavior is of interest in many fields of study. Advances in computational capabilities
have led to methods of numerical simulation which discretize polycrystals at length scales
which require constitutive information about the single crystal. Therefore obtaining consti-
tutive information of single crystals is required for these sorts of numerical studies. This
is, of course, in addition to the situations where single crystals are directly required to be
employed in an engineering application (e.g. silicon-based microelectronics).

When large (macroscopic) single crystals are cheaply available, obtaining the single crys-
tal properties is only a matter of executing the experiments to obtain material properties,
such as the constants in the strain energy function. However many materials of interest to
engineering applications, such as complicated alloy mixtures, may be difficult to possess as
a large single crystal due to the required heat treatments, etc. Therefore having the capabil-
ity to extract single crystal properties from a more readily available polycrystalline sample
would be desirable.

We present these topics in 5 sections.

1. In §3.2 we give the requisite background of X-ray diffraction theory used in this study.
The presentation of §3.2 constitutes only a subset of a fully general treatment of X-ray
diffraction, but one that is relevant to full understanding of the results and concepts
behind the type of experiment used in the present work. The most useful outcome
of §3.2 is that we derive the Fourier transform of the crystal lattice which leads to
the reciprocal lattice description. Once the reciprocal lattice is obtained, we can then
rapidly translate all required quantities to a style in line with continuum mechanics
notions of deformation analysis. We also derive the expression for scattering intensity,
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including structure factors, Thomson polarization factor, and Lorentz polarization fac-
tors. These factors are needed, for example, in order to estimate the relative volume
of grains in the polycrystal for microstructure reconstruction. In addition, developing
the general structure of analysis afforded by the Fourier transform leads to an elegant
and practically useful model of X-ray diffraction for the forward modeling of diffraction
peaks, (see item (2) in the previous list).

2. In §3.3 we apply the theory developed in §3.2 to describe technical details of a class
of synchrotron X-ray diffraction experiments. In the literature this technique is re-
ferred to as 3DXRD or HEDM (High Energy Diffraction Microscopy). At their essence
these techniques basically describe the classical rotating crystal method; the distinc-
tive features being the high X-ray energies, from synchrotron sources. We describe the
explicit mapping from observations of diffracted beams to reciprocal lattice vectors in
preparation for grain indexing and estimating lattice deformations. We discuss gen-
eral approaches to grain indexing, and suggest a novel indexing algorithm. We describe
techniques for refining the lattice deformation measurement, and compare and contrast
the approaches of a crystallographer with that of a mechanics perspective.

3. In §3.4 we present the framework for estimating kinematic information such as lattice
deformation from X-ray diffraction. In effect, this section explains how to ‘read’ the
strain gauge enabled by X-ray diffraction. We give a brief review of weighted least
squares, which is used extensively in this chapter. We present two methods for ex-
tracting information from X-ray diffraction data: a grain averaged approach and a
forward modeling approach.

The grain averaged approach leads to an efficient framework for estimating the uncer-
tainty associated with X-ray diffraction measurements of the lattice deformation H.
We implement a hierarchical method in which uncertainties in the locations of diffrac-
tion peaks are communicated to the lattice stretch and rotation parameters by using
the classical method of weighted least squares. This enables the uncertainty of the
lattice stretch and rotation parameters to be estimated based on a single full rotation
scan. We apply our framework to diffraction data obtained from a ruby single crystal
and a titanium polycrystal. We are able to state precisions for lattice orientation and
strain of 0.1◦ and 200 · 10−6 respectively, which were found to be comparable to statis-
tical analysis of repeated measurements. Our analysis also shows that we are able to
identify the source of maximum uncertainty of our measurements, in order to inform
experimental methodologies and improvements to the experimental configuration. The
basic framework of the uncertainty analysis is generally applicable to any experimen-
tal program, although specific results are unique to monochromatic X-ray diffraction
experiments.

The forward modeling approach has a certain aesthetic appeal over the grain averaged
approach. In this method, simulated diffraction peaks are forward modeled based on
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the collective information from all measured diffraction peaks, rather than having each
peak be a separate entity. Such modeling gives kinematic information inaccessible from
the grain averaged approach, such as the intragranular misorientation. The intragran-
ular misorientation can be interpreted to provide a measure of the plastic deformation
history in the grain. By the relationship between the misorientation and the unit cell
of the lattice, we can obtain a direct indication of the plastic deformation processes in
the crystal. The addition of this capability makes the high energy technique attractive
for experiments.

4. In §3.5 we attempt constitutive parameter extraction from a uniaxial tension test of
a titanium alloy (Ti-7Al, HCP). This undertaking closes the loop between Chapter 2
and the present chapter by relating experiment with the plasticity model. From the
measurements of H, we use independently obtained elastic moduli to compute grain
averaged stresses. We fit phenomenological constitutive parameters for the yield func-
tion, according to the theory in Chapter 2. We perform a similar analysis adopting
crystal plasticity theory, where we can project these stresses on the slip systems in the
material in order to obtain evidence of critical shear stress for a given slip system. The
resulting comparison between models is informative.

5. Concluding remarks are given in §3.6.

We begin with the background discussion of X-ray diffraction that closely follows the
treatment of Guiner (1963).

3.2 Background - X-ray diffraction theory

In this section we present background information for an efficient description of X-ray diffrac-
tion. The main outcome of this section is that we derive the importance of the reciprocal
lattice construction for description of diffraction observations.

We start from considering the radiation scattered by an entity such as an atom, eventually
deriving the reciprocal lattice by taking the Fourier transform of a spatial distribution of
atoms. Once the reciprocal lattice description is established, we can then effectively abandon
the formal computation of the Fourier transform and use standard notions from differential
geometry in Euclidean space to give a more computationally efficient description of the
reciprocal lattice and its evolution due to elastic deformation.1 Once this description is
obtained, we can then derive the evolution of the reciprocal lattice under elastic deformations
in a straightforward manner. That is, we derive the relation

l(i) = H−TL(i) (3.1)

1This description works well for the type of X-ray diffraction conditions undertaken in subsequently
presented experiments - these conditions being far field detector, high energy, synchrotron radiation, and
known a priori crystallographic symmetry and structure.
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where L(i) is an arbitrary reciprocal lattice vector of the reference lattice configuration,
l(i) is a reciprocal lattice vector of the current lattice configuration, and H is the lattice
deformation between configurations. A relation analogous to (3.1) which should be familiar
to mechanicians is the relation between reference and deformed material vectors,

g(i) = FG(i), (3.2)

where G(i),g(i) are the reference and current material tangent vectors. This equation is of
importance in the use of bonded resistance strain gages, whose readings track the deformation
of material elements on the surface of the material. This relation between (3.1) and (3.2)
suggests a reassuring analogy for mechanicians not familiar with X-ray diffraction procedures:
the processing of X-ray diffraction images can be considered to be readings from an three
dimensional strain gage, which has been implanted into each grain. We examine this analogy
in greater detail in §3.2.3.

The kinematic linking between elastic deformation and evolution of reciprocal lattice
vectors was long observed in theoretically minded papers by previous authors. However
the description in this section lays down in one place the relationship between a classical
X-ray diffraction treatment and a more modern approach, and applies the analysis to data.
The communication of X-ray diffraction data in terms of finite deformations as in (3.1) is
somewhat recent (Edmiston et al., 2012).

We give the background presentation in 3 sections. First, in §3.2.1 we state the assump-
tions necessary to simplify the X-ray diffraction analysis, assumptions appropriate for the
experiments undertaken in this work. We record the effect on radiated waves of a single and
then multiple scattering entities. We also give results regarding the effect of a finite material
size. This is a negligible effect in our experiments, but the derivation of this illustrates the
usefulness of the Fourier transform. In §3.2.2, we apply the Fourier transform concept to
atoms arranged in a crystal lattice, and derive the relevance of the reciprocal lattice for X-ray
diffraction. We introduce the structure factor of the unit cell, and give an example compu-
tation. We then proceed to derive the scattering power from a body, as a function of the
diffraction angles. This will be used later on in §3.5 to estimate the size of grains in a poly-
crystal and generate an experimentally suggested polycrystalline microstructure. In §3.2.3
we give a convenient description of the lattice using notions from continuum mechanics.
This will enable us to complete the transition from Fourier transforms to computationally
easier differential geometric constructions. We record expressions for the evolution of recip-
rocal lattice vectors to elastic deformation of the crystal lattice. We compare and contrast
X-ray diffraction kinematic analysis with the conventional macroscopic tool, the strain gage
rosette. Before beginning, we first list some caveats of the approach we are taking to X-ray
diffraction theory.

X-ray diffraction background - preliminaries. In this background we are considering
the kinematic theory of X-ray diffraction. This is the classical formulation given in most
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introductory books on the subject (Azaroff et al., 1974; Cullity, 1978; Guiner, 1963). The
kinematic theory is the simplest useful model for X-ray diffraction; it is also readily pushed
into a continuum mechanics friendly framework. It should be noted that, being a simplified
model, we do lose generality, and cannot characterize effects such as Compton or incoherent
scattering. The restrictions of the kinematic treatment are well explained in Azaroff et al.
(1974), but for completeness we repeat these here:

1. Small scattering amplitude - implies that the interaction between the incident beam
and the scattered beam may be neglected. If interactions between the incident and
diffracted beams may not be neglected the dynamic theory of diffraction is used, see
Azaroff et al. (1974).

2. Plane-wave approximation - implies that the incident beam has a plane wave front as
opposed to a spherical front.

3. Coherent scattering - implies that the wavelength does not change due to scattering.
This is crucial since the entire kinematical theory is built on the idea of extinctions of
diffracted waves in particular directions - an effect which is strongly dependent upon
a uniform wavelength.

An additional important restriction on the advertised generality of the background theory
presented here is that we are assuming the crystal structure is known from prior studies.
In the course of our background treatment, we will introduce some of the notions needed
to give an abstract proposition of the full structure determination problem, but will not go
into any details of this. With the limitations of the current theory established, we now begin
with the description of the X-ray diffraction problem.

3.2.1 Description of X-ray diffraction, interference computations

An X-ray diffraction experiment may be simply stated as the simultaneous processes of (1)
bombardment of a material sample under electromagnetic radiation with X-ray wavelength,
together with (2) measuring the resulting response of the material and electromagnetic field.

From this perspective, the response of the material and field are then obtained by solving
the differential equations for electromagnetism (and associated material response), which
accounts for the positions of each of the individual atoms and electrons. However in the
absence of omniscient experimental or computational capabilities, we can get a very good
approximation for the electromagnetic field diffracted by a distribution of atoms with a much
simpler model than the general boundary value problem.

The simplified model considered here is called the kinematical theory of X-ray diffraction.
The crucial assumptions required for this framework are enumerated in the introduction to
this section. We refer to Azaroff et al. (1974) for a detailed account of the assumptions made
upon employing the kinematical theory.
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In the following sections we first focus on the primary characteristic of a scattering prob-
lem which unlocks the general boundary value problem of electromagneto-mechanics to a
tractable form: consideration of the electromagnetic wave interference between diffracting
species - in our case, atoms. From this basic interference model, we can derive the impor-
tant conclusions of the kinematical theory: the concept of a Fourier transform of a spatial
distribution of atoms, and the related description of reciprocal space. Generalization of this
model to consider a crystal lattice eventually allows us to relate experimental X-ray diffrac-
tion patterns to an averaged state of deformation in the crystal. From a mechanical point of
view, this gives us kinematic information about deformation processes in the crystal. And,
in relation to the theory set out in Chapter 2, this kinematic information gives us direct
measurements of H, which can be used to validate constitutive theories of elastic-plastic
deformation of crystals.

We first we consider the effect of a single scatterer on the electromagnetic field in §3.2.1.1.

3.2.1.1 Single scatterer

Figure 3.1: (a) Incident beam with unit vector direction s0 (b) diffracted beam with unit
vector direction s (c) scattering particle

In this section we consider the effect of a single scattering entity, such as an atom, in a
propagating electromagnetic wave. Figure 3.1 illustrates a schematic representation of an
beam with direction s0 ∈ S2 incident upon a single scatterer. The diffracted wave propagates
in all directions s ∈ S2. Let

A(t) = A0 cos 2πνt (3.3)

be the amplitude of incident radiation at the scattering point x, where t is time, ν is fre-
quency, and A0 is the intensity factor. This is simply an arbitrary periodic function of the
type that solves the wave equation. The amplitude of the scattered wave a distance r from
x is (Azaroff et al., 1974)

A(t;x) = fA0 cos
[
2πν

(
t− r

c

)
− ψ

]
, (3.4)
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where f is called the scattering factor, it is the ratio between incident and scattered ampli-
tudes, ψ is the phase shift, and c is the speed of light. As an example, when the scattering
center is a free electron, the phase shift ψ = π (Guiner, 1963). In the book by Guiner (1963)
it is stated that even for atoms, ψ = π is a good approximation. We can write (3.4) in
complex form as (Guiner, 1963)

A = f exp(−iψ)A0 exp
[
2πiν

(
t− r

c

)]
. (3.5)

From the periodicity of the above amplitude function, it is evident that an interference
relation is set up when more than one scatter is present. Depending on the relative spatial
location of these entities, the interference may have different effects, between constructive
and destructive interference. In the next section we consider how this interference leads to
the notion of reciprocal space and the Ewald or reflection sphere.

3.2.1.2 Scattering pair, Ewald sphere.

Figure 3.2: Pair of scattering entities. The relative position of the scatterers, r, determines
the phase shift between diffracted waves.

Fundamental to understanding X-ray diffraction experiments is consideration of the in-
teractions between the scattered waves set up by individual waves of the form (3.5). The
simplest example demonstrating this scenario is to consider the scattered intensity from a
pair of atoms, separated by a spatial position vector r, as depicted in Figure 3.2. The incident
radiation wave propagation direction is denoted by s0, and the scattering wave propagation
direction is denoted s. Both s and s0 are unit vectors, as in Figure 3.1. The wave fronts
are denoted in the figure by the lines perpendicular to the vectors s, s0. The wave fronts
coincide up to the points indicated in the figure, where a perpendicular is dropped. The
path difference obtained from the incident and scattered beams between the two scatterers,
δ, is obtained from geometry, by computing the projections of the separation r onto the wave
direction unit vectors s, s0 as

δ = s · r− s0 · r. (3.6)
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Since we are concerned with periodic functions, the path difference, δ, is essentially equivalent
to a phase shift, φ (modulo the period), multiplied by the common wavelength, λ, e.g.

δ =
φ

2π
λ,

the phase shift φ is then given by

φ = 2π
δ

λ
= −2π

s · r− s0 · r
λ

, (3.7)

where we have used (3.6). We note in passing that the wavelength λ being common to the
incident and diffracted beams is a consequence of the kinematic theory requirement of wave
coherence, see the introduction to this section. Next, define the vector g by

g ≡ s− s0
λ

, (3.8)

and apply (3.8) to (3.7). This gives the phase shift function φ(g; r) as

φ = −2πg · r. (3.9)

The vector g will be crucially important to the following analysis. (3.9) indicates that phase
differences between scattering entities depends only on the combination g(s, s0, λ), and not
independently on wavelength λ, s, or s0.

One can gather from (3.9) and considering illustrative periodic functions of the form

A(t) = A1 cos 2πν1t+ A2 cos 2πν2(t+ φ)

that integral values of g · r will lead to constructive interference as a result of the spatial
positions of the scatterers, and that non integer values will exhibit some degree of destructive
interference. Therefore one can to begin to conceive in the abstract of the notion of an
intensity function I(g; r) which will have a structure induced by the spatial structure of
the scatterers. Certain scattering directions will have constructive interference, so that the
value of I(g; r) will be high, and other directions will have destructive interference, so that
I(g; r) = 0. The space parametrized by g ∈ R3 is called reciprocal space, G3, and will be a
useful construction throughout the all sections in this chapter.

In fact it may be stated that the intensity of radiation scattered at each g, that is, the
function I(g) over reciprocal space, is the principle result diffraction measurements seek to
obtain. Later on, we will relate this function to the distribution of scatterers in the sample
(e.g. the material structure). In §3.2.2 we will also see that a crystal lattice in real space has
a corresponding reciprocal lattice in G3. Denote the reciprocal lattice set by L. Therefore
for crystals, the function I(g) will be similar to an array of Dirac δ-functions, with high
intensity at the nodes of L and low intensity elsewhere. The deviations in the crystal lattice
structure due to elastic strains will be of interest for our mechanical analysis.
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Figure 3.3: Ewald sphere depiction. The reciprocal space ’positions’ g1,g2 are respectively
on and slightly off the sphere for this combination of s0, λ.

In practical experiments, one typically deals with a fixed experimental setup, so that s0
and λ are fixed or otherwise known from independent control systems. Then, for a given
input vector s0 and wavelength λ, we can trace the path of g(s; s0, λ) for all test directions,
s. Considering all test directions s(θ, φ) traces out a unit sphere in physical space, centered
at the position of the scattering material, where θ, φ are spherical polar coordinates. This
unit sphere, under the function g(·; s0, λ) : R3 → G3, maps to a sphere in reciprocal space,
g(s(θ, φ); s0, λ), which is constructed in Figure 3.3. Denote this sphere in reciprocal space
by S. This is called the Ewald or reflection sphere. From an experimental perspective, if
all diffracted radiation was captured via some detector bounding the inside of a spherical
cavity centered at the material sample, then I(g) would be completely quantified in the two
dimensional region in reciprocal space defined by the Ewald sphere.

To illustrate, in Figure 3.3 is shown the (two dimensional projection of) the Ewald sphere
defined by a fixed wavelength λ and a fixed incident beam s0. s is defined to be a unit vector,
so its limiting surface is depicted as originating from the origin O. The sphere defined by
s − s0 is also shown in Figure 3.3; it is simply constructed by adding −s0 to the sphere
defining all possible s. To generate the corresponding g sphere in reciprocal space (Ewald
sphere), recalling (3.8), the sphere s−s0 is amplified by the factor λ−1 as shown in Figure 3.3.
Then this Ewald sphere, whose surface passes through the origin in reciprocal space, O∗, is
the set of points where the diffraction condition is satisfied. For a fixed λ, s0, all g ∈ G3
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Figure 3.4: Ewald sphere depiction after a rotation of s0 through an angle ω, compared to
Figure 3.3. The reciprocal space ’positions’ g1,g2 are now respectively off and on the sphere
for this combination of s0, λ. This rotation is necessary to probe the entire reciprocal space
(bring all gi onto reflection sphere).

which emanate from O∗ and terminate on the sphere surface would produce constructive
interference. Conversely, given g on the sphere, the direction of diffracted radiation s can
be forward mapped by rearranging (3.8) as

s(g; s0, λ) = λg + s0. (3.10)

For a fixed s0, λ, the intersection of the diffraction sphere and reciprocal lattice points
may be empty, S ∩ L = ∅. For example, the reciprocal space point g2 in Figure 3.3 is
off the sphere, but after rotating the incident beam s0 through an angle ω, as depicted in
Figure 3.4, we arrive at a condition where the diffraction sphere intersects g2. This is the
reason that in monochromatic experiments we must rotate the crystal, c.f. the rotating
crystal method (Cullity, 1978). Conversely, in polychromatic wavelength experiments, the
reflection sphere becomes effectively a spherical annulus, e.g., a continuum of Ewald spheres
for each wavelength. In these experiments more points in reciprocal space are accessible
from a single s0, and no rotation of the material is required.

By going to lower and lower wavelengths, i.e., higher beam energies, the total volume
in reciprocal space which is possible to probe by physically rotating the sample is given by
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the spherical ball with radius 1/λ. It is computed simply as (4π/3)λ−3. As the wavelength
decreases, the reciprocal space volume which may be probed increases. However, as a trade
off, with the same detection capabilities, the precision with which the determination of
I(g) is made decreases along with the wavelength. In our experiments we use a relatively
low wavelength (high energy) of about λ̂(50keV) ≈ 0.0238 nm, so the precision of our
measurements is important to quantify. In particular, we need to determine how precision
in the measurements of I(g) corresponds to precision in the grain averaged deformation, H.
We will consider this issue in §3.4. It should be noted that an important benefit of using
higher beam energies is that we have greater penetration depths into the sample, which is
usually a primary factor to consider.

3.2.1.2.1 Multiple scatterers Returning to the consideration of interference computa-
tions, we now consider an arbitrary array of scatterers. Starting from the equation (3.5),
for an array of scattering entities with different scattering factors fi we can arrive at the
amplitude function (Guiner, 1963)

A(g) = A0

n∑
i=1

fi exp iφi(g), (3.11)

where φi(g) = φ(g; ri) is given from (3.9), with ri the position of the scatterer with respect
to an arbitrary common origin (fig).

Next we specialize to solid crystals, by computing the intensity I(g) for a group of atoms
organized in a regular lattice. Assign a distinguished atom by setting the origin at its
location. Then assigning position vectors xi, and scattering factors fi we have the amplitude
function expressed as

F (g) =
N∑
i=1

fi exp(−2πig · xi), (3.12)

where N is the number of atoms in the distribution, and where we have used (3.9) and (3.11)
with r ≡ xi. The function F (g) is called the structure factor for this grouping of atoms; it is
simply the amplitude function A(g) for the array, (3.11). An example practical computation
of the structure factor for a BCC material will be given in §3.2.2.3.

We have seen that the structure factor in equation (3.12) depends on the choice of origin
for computing xi. However, the intensity, defined to be the square of the modulus of the
amplitude function, A(g), that is

I(g) = |A(g)|2 = A(g)A∗(g), (3.13)

where A∗ is the complex conjugate of A, is independent of the choice of origin. To see this,
we compute the intensity of the distribution using (3.12) in (3.13). The result is given as
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(Guiner, 1963)

I(g) = (F · F ∗)(g) =
∑
i

∑
j

fifj exp(−2πig · (xi − xj)), (3.14)

which depends only on relative positions between the atoms, xi−xj. In fact, the intensity is
the only measurable quantity from a diffraction experiment - as phase information φi(g) is
not available with conventional diffraction experiments. Were phase information detectable,
as noted in Guiner (1963), X-ray diffraction experiments would perform as a microscope to
directly visualize and probe the lattice structure.

We pause here to examine (3.14) for the case of a spatially homogeneous deformation of
the scatterers xi. We adopt terminology typically used in mechanics, see Liu (2002). For
a reference configuration position X, the current position is simply x = FX, modulo some
translation. Here F is a spatially homogeneous deformation gradient. Any translational
offset will not matter in the end since we need relative positions in the intensity expression,
(3.14). Therefore we have the kinematic equivalence

xi − xj = F(Xi −Xj),

which gives

I(g) = (F · F ∗)(g) =
∑
i

∑
j

fifj exp(−2πig · F(Xi −Xj)). (3.15)

For an infinite summation in (3.15) , I(g) will be zero unless g = F−TG, for some G ∈ G3,
the reciprocal space of the reference configuration. To see this, consider the sequence

g · F(Xi −Xj) = F−TG · F∆X

= G · F−1F∆X

= G ·∆X

= HA+KB + LC ∈ Z, (3.16)

where ∆X = AG1 +BG2 +CG3, and G = HG1 +KG2 +LG3 are parametrizations of the
direct and reciprocal reference lattices. The result (3.16) implies that I(g) will differ from
zero since exp(−2πin) = 1 for n ∈ Z. Translating (3.15) into the reference configuration,
the intensity distribution over reference reciprocal space is given by

I(G) = (F · F ∗)(G) =
∑
i

∑
j

fifj exp(−2πiG · (Xi −Xj)). (3.17)

The computations in (3.16) will be more evident after the discussion in §3.2.3.
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3.2.1.3 Continuous distribution of scatterers, Fourier transforms

The diffracted intensity from a discrete distribution of scatterers (3.11) can be generalized
by passing to a continuous distribution with spatial density ρ(x). In this case we have, using
(3.9) in (3.11) and passing to the continuous limit,

A(g) =

∫
ρ(x) exp(−2πig · x)dx. (3.18)

In usual usage ρ(x) is the electron density function (per unit spatial volume), and the
integral extends to all physical space, x ∈ R3. The practically important case of a finite
body is interesting to consider; we will look at this problem in the next section.

Upon passing to the continuous limit, (3.18) indicates that the amplitude function A(g)
is the Fourier transform of the spatial distribution of scattering particles ρ(x). The notion
of taking the Fourier transform of a crystal is useful from a conceptual and computational
perspective. It will also enable us to eventually derive the reciprocal lattice, which will
be a fundamental construct in passing to a geometric/mechanics-centric analysis of X-ray
diffraction.

We pause here to note another significant aspect of (3.18), at least in terms of providing
motivation for the general crystal structure determination problem. Hypothetically speaking,
the critical step in the task of determining structure from X-ray analysis is stated as taking
the inverse Fourier transformation of the amplitude A(g) in order to determine the spatial
distribution ρ(x),

ρ(x) =

∫
A(g) exp(2πig · x)dg. (3.19)

The determination of ρ(x) is then equivalent to determining the atomic structure of the
material being studied. It bears restating - were phase information available, (3.19) could
be used to turn X-ray diffraction data into a microscope where the distribution of scatterers
is known precisely. Ultimately however, this procedure cannot work since the function A(g)
cannot be observed. X-ray diffraction does not measure the relative phases of the diffracted
waves, so that the amplitude function cannot be measured directly, and ρ(x) is therefore
inaccessible by using (3.19). Only total intensity, e.g. I(g) = AA∗ is measured. See (Guiner,
1963) for an informative treatment for this general case. Fortunately, in this study, the
structure of the material may be assumed to be known from prior experimental studies,
so a full structure determination framework is overly general for our purposes here. Our
interests are in the evolution of the lattice structure due to deformation (strain) and not in
the determination of the structure without prior knowledge.

Before considering computational details of the Fourier transform of a crystal lattice
in §3.2.2, we first consider the practically important effect of a finite object on the theory
developed thus far. This will be useful in the section on forward modeling, §3.4.2.2.
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3.2.1.4 Finite size effect.

As a final background point before applying the Fourier transform framework to crystal
lattices, it is interesting to consider the effect of a finite object on the diffraction pattern.

Consider an object, denoted as V , where ρ(x) 6= 0, x ∈ V , and ρ(x) = 0,x /∈ V . The
spatial density of scatterers ρ(x) may then written as the product

ρ(x) = (ρ∞σ)(x), (3.20)

where

σ(x) =

{
1 if x ∈ V

0 if x /∈ V
(3.21)

is called the indicator function, and ρ∞ is the scatterer density, extended to infinite spatial
domain. Next, denote A(g) = trans[ρ(x)], where trans : f(x) → F (g), is the Fourier
transform defined by (3.18). Then we have, taking the transform of (3.20)

A(g) =

∫
ρ∞(x)σ(x) exp(−2πig · x)dx. (3.22)

Using the Faltung product, (3.22) becomes

A(g) = Σ(g) ∗ A∞(g), (3.23)

where Σ(g) = trans[σ(x)] and A∞(g) = trans[ρ∞(x)]. The Faltung product or convolution
in (3.23) has the interpretation that the amplitude A(g) is essentially superposition of the
transform Σ(g) placed at each point of the amplitude function which would be nonzero if
the material were infinite.

As a simple intuitive example of the Faltung/convolution integral for a different case,
consider a problem of a light beam, shining on a planar surface. Given an appropriate sensor,
one could measure the intensity of light falling on the surface as a function of position on
the surface. Denote this intensity function as F = F (x), where x is a position coordinate,
and F is the intensity. Next consider a spatial array of lights. Let the spatial density of
these lights be ρ(x). The resultant intensity on the wall is given by the convolution of the
two functions, Ftot = F ∗ ρ. Equation (3.23) suggests a similar behavior to this example.
Practically speaking, once the transform A∞(g) is characterized for idealized, infinite solid
crystals, for finite bodies (e.g. the practical case), diffraction peaks are not mathematically
sharp points but have some width corresponding to the finite size effect, Σ(g). It should
be noted that this size effect is in addition to other sources which create finite peak widths,
such as spatial gradients in the lattice deformation.

In an ideal situation (3.23) would be enough to quantify the size effect of the crystallites2.
However since the amplitude A(g) is not experimentally accessible, we must consider the

effect of the finite size on the integrated intensity I(g), which is a more complicated problem.

2In the following we will use the terms crystallite in several situations. We basically use crystallite to
imply a small coherently diffracting crystalline domain. The length scale of the material at which the term
applies in this context may vary from that microns to the dimension for a grain of a polycrystal.
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We now compute the finite size effect on the intensity, I(g). The following comes from
the description in Guiner (1963), where the derivations are carried out with greater detail.
First we require the expression for the diffracted intensity. We have

IN(g) = A∗A

=

∫
ρ(u) exp (2πig · u)du

∫
ρ(v) exp (−2πig · v)dv

=

∫ ∫
ρ(u)ρ(v) exp (−2πig · (v − u))dudv, (3.24)

where we have used (3.18), and where IN is the total diffraction intensity. Defining x ≡ v−u
we have from (3.24)

IN(g) =

∫ ∫
ρ(u)ρ(x+ u) exp (−2πig · x)dxdu

=

∫
P(x) exp(−2πig · x)dx, (3.25)

where

P(x) ≡
∫
ρ(u)ρ(x+ u)du (3.26)

is called a Patterson function. Inverting (3.25) via Fourier transform we obtain

P(x) =

∫
I(g) exp (2πig · x)dg. (3.27)

As stated before, X-ray diffraction experiments measure I(g). Therefore the function P(x)
is obtained experimentally.

With a finite object, (3.26) becomes

P(x) =

∫
σ(u)σ(u+ x)ρ∞(u)ρ∞(x+ u)du. (3.28)

Due to the nature of the indicator function σ, we have that we can write (3.28) as

P(x) =

∫
V(x)

ρ∞(u)ρ∞(u+ x), (3.29)

where the volume V(x) is the region in R3 where σ(u)σ(u+ x) = 1. Therefore we define

V(x) =
∫
σ(u)σ(u+ x)du ≡ V · V (x). (3.30)

We give the following additional interpretation to V · V (x) in(3.30) from Guiner (1963).
V · V (x) is the volume common to the physical diffraction object and to its ’ghost’ obtained
by displacing the object a distance x. With this intuitive picture in mind we state the
following properties which will be used later
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1. V (0) = 1, since at x = 0, V · V (x) = V

2. V (x) = V (−x)

3. V (x) is decreasing, becoming zero when x is greater than the diameter of the object
in the direction x

From (3.30) we have

V · V (x) =

∫
σ(w)σ(−(x−w))dw. (3.31)

Recalling that from the properties of a Faltung, (A.11), we have∫
σ(w)σ(−(x−w))dw =

∫
σ(w)(σ ◦ 1−1)(x−w)dw

= σ(x) ∗ (σ ◦ 1−1)(x)

= σ(x) ∗ σ(−x), (3.32)

where the inversion function 1−1 : A → A, 1−1(x) = −x, for a group A (here A = (R3,+)).
The transform of V (x) is then given by, with (3.31) and (3.32),

V (x) =
1

V
σ(x) ∗ σ(−x). (3.33)

Now trans[σ(x)] = Σ(g), trans[σ(−x)] = Σ∗(g) and using the Faltung theorem, (A.12),
Equation (3.33) gives

trans[V (x)] =
1

V
Σ(g)Σ∗(g)

=
1

V
|Σ(g)|2. (3.34)

Writing out the left hand side of Equation (3.34) and rearranging gives

|Σ(g)|2 = V

∫
V (x) exp (−2πig · x)dx. (3.35)

Recall also the expression for the Fourier transform of σ(x):

Σ(g) =

∫
σ(x) exp (−2πig · x)dx, (3.36)

so that

Σ(0) =

∫
σ(x)dx = V, (3.37)
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which implies
|Σ(0)|2 = V 2. (3.38)

Next, we can show that |Σ(g)|2 is centrosymmetric. Since σ(x) ∈ R =⇒ Σ(g) = Σ∗(−g),
we have

|Σ(−g)|2 = Σ(−g)Σ∗(−g) = Σ∗(g)Σ(g) = |Σ(g)|2, (3.39)

symmetry being shown.
Now, if the physical object were large, say V (x) = 1,with‖x‖ → ∞, then from (3.35)

|Σ(g)|2 would essentially be a Dirac-delta function in g-space, see (A.10). From this view-
point we conclude that |Σ(g)|2 is a rapidly decreasing function from its maximum at g = 0.
Therefore the maximum is given by (3.38), V 2. Transforming |Σ(g)|2 gives

V (x) =
1

V

∫
|Σ(g)|2 exp 2πig · xdx, (3.40)

and V (0) = 1 from the previously stated properties of V (x) so that we have the result∫
|Σ(g)|2dg = V, (3.41)

where V is the spatial volume of the diffracting material, which will be used later, and the
integral is over all reciprocal space. From the established properties of |Σ(g)|2, approximating
|Σ(g)|2 by its maximum, V 2, in a small nonzero (reciprocal space) volume, w centered at
g = 0, is a useful exercise and gives∫

|Σ(g)|2dg = V 2

∫
dg = wV 2, (3.42)

where w is the volume of the region in reciprocal space where the approximation for |Σ(g)|2 =
V 2 holds. Then equating (3.42) and (3.41) gives

w =
1

V
. (3.43)

The actual width of the function Σ(g) in reciprocal space is then estimated by taking w to
be a three dimensional cube with side length 2s0, which with (3.43) gives

(2s0)
3 =

1

V
=

1

r3
, (3.44)

where we have used V = r3, with r the size of the material in physical space, e.g. the cube
edge length, and s0 is the size of the region of volume w. Rearranging (3.44) gives

s0 =
1

2r
. (3.45)



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 154

For a given wavelength, λ, the angular spread in the diffraction peak coordinate θ due to
the finite size of the object can be computed from Bragg’s law, with d = s−1

0 through the
relation

s0 =
2 sin θ

λ
. (3.46)

Solving (3.46) for θ(s0(r)), with (3.45) then gives the angular spread in the diffraction peak
due to the particle size effect. This data is plotted on log scale in Figure 3.5, for λ =
λ(50keV) = 0.0238nm. Figure 3.5 indicates that finite size effects become most important
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Figure 3.5: Trend of crystallite size effect on the spread in the Bragg angle, θ, from (3.46).

for submicron (nano) grain sizes. Our grains are on the order of a hundred microns, so
size effects due to sub-grain or crystallite breakdown will not be a critical ingredient in the
modeling required for this work. We will however use the formal consideration of size effects
in the development of a forward model, see §3.4.2.2.
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To further justify neglecting size effects, we have to introduce some details of the experi-
mental configuration. The geometry of the setup is described in Figure 3.13, §3.3. Consider
the resolution determined by the pixel size, p/L, where p is the pixel size and L is the sam-
ple to detector distance. From the far field geometry, the resolution in the Bragg angle θ
is approximately p/L. Bragg’s law gives that the corresponding reciprocal space resolution
is 2θ = λs0 =⇒ s0 ≈ 2p/(λL). And (3.46) gives that size effects become detectable
for λ/(2r) ≈ 2p/L. With typical pixel size and detector distances, p/L ≈ 0.2 · 10−3, and
λ = 0.0238nm, this occurs for r ≈ 0.03 µm. For an alternate treatment see Warren (1969),
where they report

θFWHM =
0.94λ

r cos θ
,

where FWHM denotes full width at half max of the Bragg angle spread. FWHM can be
related to the standard deviation parameter of a Gaussian distribution. With this, θFWHM ≈
p/L ≈ 0.2 · 10−3, and θmax ≈ 0.1 gives a detectable particle dimension of detection of
0.1 µm, which is in the same order of magnitude as the previous estimate. From these
estimates, broadening due to particle size effects will not be significantly detectable in our
experiments. Observable broadening will instead come from a variety of factors, collectively
grouped under the category ’instrumental broadening’, (Warren, 1969). For example the
deviation in wavelength λ from monochromatic experiments will cause some broadening
effect. See §3.4.2.2 for more information.

In the next section, we apply the general framework developed thus far to the regular
array of atoms found in a solid crystal. We will use the Fourier transform concept from
Equation (3.18) in order to derive the reciprocal lattice associated with the physical crystal
lattice. Once we obtain the reciprocal lattice description we can apply analytical techniques
following from considerations of diffeomorphisms of differentiable manifolds representing the
lattice structure to deduce the effect of lattice deformations on the diffraction pattern. This
geometric framework will be more convenient for computations of lattice strain, for example,
than using the more cumbersome Fourier transforms.

3.2.2 Application to crystalline lattices.

In this section we consider the theory of diffraction resulting from crystal lattices. Crys-
talline materials are of primary interest to solid mechanics studies. For example, important
structural metals such as iron, titanium, and aluminum are naturally crystalline. Although
normal processing procedures induce a polycrystalline structure, the single crystal domains,
called grains, can be analyzed with the framework we develop in this section.

A primary outcome of this section is the derived importance of the reciprocal lattice
description of the crystal. We first begin with the general notion of a crystal lattice in the
spatial configuration. The following formulation and description works without caveat for
simple lattices such as simple cubic, but the results can be applied to more complicated
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structures easily3. Simple lattices are considered to make the notation and discussion less
cumbersome.

3.2.2.1 Spatial crystalline lattice

In this section we derive the Fourier transform of the crystal lattice. First we must charac-
terize the spatial distribution of atoms in a crystal, in order to obtain an expression for the
scattering density ρ(x). This quantity was introduced in (3.18).

Figure 3.6 depicts a simple lattice. The origin of the spatial coordinate system is set

O

x(1, -1, 1)

a

b

c

Figure 3.6: The lattice of a simple cubic crystal. The lattice vectors a,b, c for a basis.
Positions x can be described relative to the basis, as shown for the vector x(1,−1, 1) =
a−b+c. In this basis integral coefficients of the basis vectors correspond to lattice points.

on a node of the lattice, as shown in the figure. The linearly independent vectors a,b, c
generate the lattice by translations; they are called the lattice vectors. The position field in
the crystal lattice, x, may be described by the function

x(θ) = θ1a+ θ2b+ θ3c, (3.47)

where x is the spatial position and θ = (θ1, θ2, θ3) ∈ R3. Generally θ range freely, but
θ ∈ Z3 on lattice sites. To apply the Fourier transform to such arrays of atoms, we divide

3Non simple lattices have non trivial extinction reflections which must be considered. The set of active
reflections comes from the structure factor calculation. An example is given later in this section.
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the description of the crystal into the (Faltung) product of unit cells at each lattice site, so
that the scattering density ρ(x) may be expressed as the convolution of two terms,

ρ(x) = ρc(x) ∗ [z(x)σ(x)], (3.48)

where ρc(x) is the local electron density defined over the unit cell, the lattice function z(x)
is nonzero only on lattice sites, and σ(x) is the indicator function introduced in (3.21) which
accounts for the macroscopically finite size of the crystal. The lattice function z(x) can be
described by a combination of Dirac-delta functions, written as

z(x) =
∑
θ∗

δ(x− x(θ∗)), (3.49)

where θ∗ ∈ Z3. Should there be confusion with what is meant by (3.49), we are using the
shorthand ∑

θ∗

δ(x− x(θ∗)) ≡
∑
m

∑
n

∑
p

δ(x− xmnp), (3.50)

where
xmnp ≡ ma+ nb+ pc (3.51)

for m,n, p ∈ Z. Recalling the intuitive example of convolutions given in §3.2.1.4, we can see
that the operation given in Equation (3.48) has the mathematical features we are looking
for in describing a lattice (population of a locally nonzero function at discrete lattice points)

Next, recall the general expression for the amplitude function regarded as a Fourier
transform of the scatterer density. That is, A(g) = trans[ρ(x)], see Equation (3.18). Further
recall that the magnitude of the amplitude gives the diffraction intensity, I(g) = |A(g)|2,
which is the observable in a diffraction experiment. Therefore to compute the intensity we
must first compute the Fourier transform of ρ(x) of the combination in Equation (3.48), and
then take the modulus. Using the property of Fourier transforms in (A.12), (A.13), A(g) is
given by the product,

A(g) = F (g)[Z(g) ∗ Σ(g)], (3.52)

where F (g) ≡ trans[ρc(x)] is the transform of ρc(x) over the unit cell and is called the struc-
ture factor, and Σ(g) is the transform of the indicator function over the crystal, described in
§3.2.1.4. We previously introduced the structure factor for the unit cell in Equation (3.12)
in the previous section. We will return to the structure factor calculation shortly and give
an example computation; first let us examine Z(g) ≡ trans[z(x)], as this will lead to the
reciprocal lattice construction which is more crucial to the rest of the framework.

3.2.2.2 Reciprocal lattice

From Equation (3.49) and Equation (3.52) we need to compute the transform of z(x) in
order to compute the amplitude, A(g). Using the definition of the transform and (3.49), we
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have

Z(g) =

∫
z(x) exp(−2πig · x)dx

=

∫ ∑
θ∗

δ(x− x(θ∗)) exp(−2πig · x)dx

=
∑
θ∗

exp[−2πig · x(θ∗)], (3.53)

where we have used the properties of the Dirac delta function, given by∫
δ(x− x∗)f(x)dx = f(x∗). (3.54)

Then, using (3.47) in (3.53), and with evaluations of x on lattice sites, x(θ∗) given by (3.51),
Equation (3.53) becomes

Z(g) =

(∑
m

exp[−2πimg · a]

)(∑
n

exp[−2πing · b]

)(∑
p

exp[−2πipg · c]

)
. (3.55)

It can be shown (see Guiner (1963)) that by taking the summation limits in (3.55) from
−N/2 to N/2, N ∈ N, the result of a single summation factor from (3.55) can be simplified
to

N/2∑
m=−N/2

exp[−2πimg · a] = 1 + 2

N/2∑
m=1

cos [2πm(g · a)] (3.56)

=
sin [(N + 1)πg · a]

sin [π(g · a)]
. (3.57)

The terms sin[2πmg·a] drop out of (3.56) since sin is an odd function, e.g. sin (x)+sin (−x) =
0. The final expression Equation (3.57) is plotted vs g · a in Figure 3.7 for various values
of N . Equation (3.57) has a discontinuity at integral values of g · a, but the right and left
hand limits at these points are the same at integral values of g · a. Therefore by taking the
limit as g · a approaches an arbitrary integer, we obtain the result

lim
g·a→Z+

sin [(N + 1)πg · a]
sin [π(g · a)]

= lim
g·a→Z−

sin [(N + 1)πg · a]
sin [π(g · a)]

= N + 1. (3.58)

The width of the peaks at the integral values of g · a is obtained by considering the zeros of
the numerator of (3.57). Rewriting the numerator gives

sin (N + 1)πg · a = sin 2πfg · a, (3.59)
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Figure 3.7: Plot of Equation (3.57) for various values of N . The limiting behavior is quali-
tatively similar to Dirac-delta functions at the integral values of g · a

where f = (N + 1)/2 is the frequency. Then (3.59) has a full period, T , of

T =
1

f
=

2

N + 1
, (3.60)

and a half period (i.e. peak width, w) of

w =
T

2
=

1

N + 1
. (3.61)

With the interpretations provided by (3.61) and (3.58), Equation (3.57) clearly represents
something akin to a Dirac delta function, see Figure 3.7. In other words, as N → ∞, then
for g · a ∈ Z, (3.57) tends to a large number, and for g · a /∈ Z, with fixed g, the summation
tends to zero (Guiner, 1963). Applying these observations to each of the summations in the
product (3.55) gives the result that (3.55) becomes

Z(g) =

{
K if (g · a, g · b, g · c) ∈ Z3

0 else,
(3.62)

where K is a constant which will eventually be related to the physical size of the unit cell
later in this section. In other words, Z(g) is zero unless we have the simultaneous conditions

g · a = h, g · b = k, g · c = l, (3.63)
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where h, k, l ∈ Z. This is a restriction on the reciprocal vectors which give rise to non zero
intensities, (see the discussion in §3.2.1.2.

At this point it is useful to introduce a formal parametrization for reciprocal space.
We resolve g on the dual basis to the lattice vectors a,b, c, giving the representation (see
Equation (A.15))

g = (g · a)a∗ + (g · b)b∗ + (g · c)c∗, (3.64)

where a∗,b∗, c∗ are the reciprocal basis to a,b, c. Then using the results of (3.63) in (3.64)
we have the form

g = ha∗ + kb∗ + lc∗. (3.65)

Ranging h, k, l over the integers and noting the values given by (3.65) represents a lattice in
reciprocal space. More generally, we can parametrize reciprocal space by

g(β) = β1a
∗ + β2b

∗ + β3c
∗, (3.66)

where here β ∈ R3, and βi, i = 1, 2, 3 are the components of β. Equation (3.66) simply
reflects the fact that a∗,b∗, c∗ are a basis for reciprocal space. With (3.66) parametrizing
reciprocal space, the results of (3.62) and (3.63) are rewritten as

Z(g(β)) = 0 β /∈ Z3

and
Z(g(β)) 6= 0, β ∈ Z3.

The parametrization given by (3.66) thus forms a lattice in reciprocal space much as Equa-
tion (3.47) does in the physical space, with lattice points at β ∈ Z3. This lattice will be
referred to as the dual or reciprocal lattice, and vectors on reciprocal lattice sites will be
referred to as reciprocal lattice vectors.

Denoting β ∈ Z3 by β = β∗ we now rewrite (3.62) as

Z(g) = K
∑
β∗

δ(g − g(β∗)). (3.67)

In (3.67) we are using the shorthand similar to that used previously for the spatial lattice,
Equation (3.50). That is,∑

β∗

δ(g − g(β∗)) ≡
∑
h

∑
k

∑
l

δ(g − ghkl), (3.68)

where
ghkl ≡ ha∗ + kb∗ + lc∗ (3.69)

denotes a reciprocal lattice node, h, k, l ∈ Z. We now compute the scaling constant K
required in Equations (3.62), (3.67).
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Computation of scaling constant

To compute the value ofK in (3.67) we integrate Z(g) around an h, k, l node of the reciprocal
lattice. By the properties of the Dirac delta function,

K =

∫
node

Z(g)dg. (3.70)

We now write out the integral on the right hand side. To simplify the notation we replace
the parametrization of reciprocal space in (3.66) by

g(g1, g2, g3) = g1g
1 + g2g

2 + g3g
3 = gig

i, (3.71)

where gi ∈ R, i = 1, 2, 3, and g1,g2,g3 ≡ a∗,b∗, c∗, respectively. Next we have, by (3.55)
with (3.57) and (3.71), for some large natural number N ,

Z(g;N) =

(
sin [(N + 1)πg1]

sin [π(g1)]

)(
sin [(N + 1)πg2]

sin [π(g2)]

)(
sin [(N + 1)πg3]

sin [π(g3)]

)
. (3.72)

Around a particular ghkl node of the reciprocal lattice, we take an integration box with
dimension ± ε. Using the expressions for peak height and width from (3.58) and (3.61),
considering a single factor in (3.72) gives∫ g1(hkl)+ε

g1(hkl)−ε

sin [(N + 1)πg1]

sin [π(g1)]
dg1 ≈ (N + 1)

1

N + 1
= 1. (3.73)

Next, we have ∫
node

Z(g)dg =

∫
node

Z(g)[g1 · g2 × g3] (3.74)

=

∫
node

Z(g) detF∗
cdg1 ∧ dg2 ∧ dg3

=

∫
node

Z(g)V ∗
c dg1 ∧ dg2 ∧ dg3

= V ∗
c

∫
node

Z(g)dg1 ∧ dg2 ∧ dg3 (3.75)

= V ∗
c · 1

= V ∗
c , (3.76)

where we have used (3.73) in arriving at (3.76). Here

F∗
c ≡

∂g

∂gj
⊗ ej,
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and where V ∗
c = detF∗

c is the volume form of the reciprocal unit cell. Should further
explanation of the above operations be helpful, the volume element dg in (3.74) is represented
by the parallelepiped with edges given by gi, i = 1, 2, 3. The integral in (3.75) is over
the natural coordinates gi, i = 1, 2, 3, hence the Jacobian F∗

c is introduced. With this,
Equation (3.76) taken with (3.70) gives

K = V ∗
c . (3.77)

When we introduce the differential geometry for crystalline lattices, in §3.2.3, we will see
that we have the relation

V ∗
c =

1

Vc
, (3.78)

where Vc is the unit cell volume in physical space. Taking Equation (3.78) in (3.77) gives

K =
1

Vc
, (3.79)

so that (3.67) is written as

Z(g) =
1

Vc

∑
β∗

δ(g − g(β∗)). (3.80)

We have therefore completed the determination of the transform Z(g). We now return
to considering the rest of the terms in Equation (3.52). First, the Faltung product in (3.52)
is simplified by using a property of Faltung with Dirac-delta functions, see Guiner (1963,
Appendix), yielding

Z(g) ∗ Σ(g) = 1

Vc

∑
β∗

δ(g − g(β∗)) ∗ Σ(g) (3.81)

=
1

Vc

∑
β∗

Σ(g − g(β∗)). (3.82)

Next, recall from §3.2.1.4 that Σ(g) is a rapidly decreasing function with non zero value in
a volume around the origin of reciprocal space. The volume of the region where Σ(g) differs
from zero was shown to be approximately 1/V where V is the physical volume of the entire
crystal. Therefore, the Faltung of the lattice transform with the size effect, Z(g) ∗ Σ(g),
broadens the sharp points of Z(g) to distributions with width proportional to the physical
size of the crystal. For future use, following Guiner (1963), we denote this Faltung by

R(g) ≡ Z(g) ∗ Σ(g) ==
1

Vc

∑
β∗

Σ(g − g(β∗)). (3.83)

To complete the specification of the amplitude function in (3.52) we now consider the
structure factor of the unit cell, F (g), i.e. the transform of the electron density function
ρ(x).
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3.2.2.3 Structure factor computation

In Equation (3.52) we need the transform of the electron density over the unit cell,

F (g) =

∫
ρ(x) exp(−2πig · x)dx. (3.84)

Using Equation (3.83) in (3.52), we rewrite (3.52) as

A(g) = F (g)R(g), (3.85)

where R(g), defined by (3.83), is a sharp function around the reciprocal lattice nodes at g =
g(β∗) = ghkl. Since R(g) is sharp, we can simplify (3.85) by considering the approximation
to F (g) at a reciprocal lattice node, giving

A(g) ≈ F (g(β∗))R(g) (3.86)

= F (g∗)R(g), (3.87)

where g∗ = ghkl, see (3.69). Then

F (g∗) =

∫
ρ(x) exp(−2πighkl · x)dx

≡ Fhkl, (3.88)

where Fhkl is the structure factor of the unit cell. From Equation (3.88) each h, k, l node of
reciprocal space has a corresponding structure factor, differing from point to point, according
to the atomic structure described by the unit cell. For a discrete crystal lattice with unit cell
containing N atoms at the lattice points enumerated by x(θ∗

i ), i = 1, 2, ..., N , the structure
factor from (3.88) can be written as, (Cullity, 1978)

Fhkl =
N∑
j=1

fj exp(2πighkl · x(θ∗
j)) (3.89)

=
N∑
j=1

fj exp(2πi(hmj + knj + lpj)), (3.90)

where we have used Equation (3.51), (3.65), and the property of the reciprocal and direct
lattice encoded by the relations gi · gj = δji .

Structure factor - example computation. For completeness an example of the compu-
tation of structure factor described by (3.90) is given. Consider the lattice motif in Figure 3.8.
This is the motif for a body centered cubic lattice. There are two atoms per unit cell, hence
the motif has two atoms. The lattice points x1,x2 have the coordinates

x1 = 0,
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g3

g2

½, ½, ½

0, 0, 0

BCC motif BCC unit cell

g1

Figure 3.8: On the left, the BCC lattice motif for structure factor calculation. On the right,
the BCC unit cell.

x2 =
1

2
(g1 + g2 + g3).

A reciprocal vector is given by the parametrization

g = hg1 + kg2 + lg3

so that Equation (3.90) is computed as

Fhkl = f1 + f2 exp 2πi(h/2 + k/2 + l/2)

= f1 + f2 expπi(h+ k + l). (3.91)

For simplicity, take f1 = f2 = f , e.g. the same atoms are at both points of the motif. This
would be the case for elemental iron, for example, along with many other important metals.
By inspection of Equation (3.91), setting h+ k + l = even gives

Fhkl = f(1 + 1) = 2f,

and for h+ k + l=odd, (3.91) gives

Fhkl = f(1 +−1) = 0.

Therefore, in consideration of the reciprocal lattice parametrization from (3.65), we have
some reciprocal nodes h, k, l where there is no diffraction. This is because the BCC lat-
tice is not a simple lattice. For BCC, the extinctions are described by, e.g., h, k, l =
(1, 0, 0), (1, 1, 1), etc., and diffraction will occur for, e.g., h, k, l = (1, 1, 0), (2, 0, 0), etc.. In
this way, the generation of the h, k, l indices for which diffraction occurs generates the recip-
rocal lattice by using the integral parametrization g = hg1 + kg2 + lg3.



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 165

Equations (3.88) and (3.82) now completely specify the amplitude function we are after,
(3.52),

A(g) = F (g)[Z(g) ∗ Σ(g)].
As mentioned several times, the amplitude A(g) is not measurable in an X-ray diffraction
experiment, however the intensity, I(g) = |A(g)|2 is. In the next section we consider the
scattering power for a given reflection, which is proportional to I(g). This calculation will
give the true integrated intensity picked up by the detector, hence it is the directly measured
quantity in the X-ray diffraction experiments we are considering. We will also introduce
the Lorentz and Thomson polarization factors, which also contribute to the experimentally
measured intensity.

3.2.2.4 Scattering power

The intensity at a point in reciprocal space is given by taking the modulus of Equation (3.85),

IN(g) = A(g)A∗(g)

= F (g)F ∗(g)R(g)R∗(g)

=
1

V 2
c

∑
i

F 2
hkl|Σ(g − g(β∗

i ))|2, (3.92)

where we have used
F (g)F ∗(g) = |Fhkl|2 (3.93)

along with a simplification of the product

R(g)R∗(g) =
1

Vc

∑
i

Σ(g − g(β∗
i ))

1

Vc

∑
j

Σ∗(g − g(β∗
j)). (3.94)

Derivation of (3.92) To simplify Equation (3.94) we use the following logic. Since the
functions Σ(g) are confined to the neighborhoods of the lattice nodes, via the results of the
finite size computation from (3.46), we can take the i, j overlaps between the summations in
(3.94) to be zero. This gives the following sequence of reductions,

R(g)R∗(g) =
1

Vc

∑
i

Σ(g − g(β∗
i ))

1

Vc

∑
j

Σ∗(g − g(β∗
j))

=
1

V 2
c

∑
i

∑
j

Σ(g − g(β∗
i ))Σ

∗(g − g(β∗
j))δij

=
1

V 2
c

∑
i

Σ(g − g(β∗
i ))Σ

∗(g − g(β∗
i ))

=
1

V 2
c

∑
i

|Σ(g − g(β∗
i ))|2. (3.95)
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Now, starting from Equation (3.52), we use (3.88) along with (3.82) and (3.95). The result
(3.92) then follows.

The scattering intensity (power per solid angle) per unit cell is obtained by dividing
(3.92) by the total number of unit cells N . For a body of volume V , and unit cell volume Vc
there are N = V/Vc unit cells. This gives

I(g) =
IN
V/Vc

=
1

V Vc

∑
i

F 2
hkl|Σ(g − g(β∗

i ))|2. (3.96)

We now consider the scattering power from a finite crystal. A general reciprocal lattice
peak where I(g) 6= 0 is indicated in Figure 3.9, where the Ewald sphere is also indicated. We
will return to this figure in a subsequent discussion. As shown previously, for monochromatic
radiation one must physically rotate the crystal to have the Ewald sphere intersect the
reciprocal lattice vector. The geometry of how the reciprocal lattice vector intersects the
Ewald sphere has implications for the scattering intensity produced by the reciprocal lattice
vector passing through the Ewald sphere. To simplify the geometry of this intersection
process, in Figure 3.9 we first consider a reciprocal lattice vector which is in the plane of
rotation, and derive the expression for the scattering power. We then generalize to the case
when the reciprocal vector is not in the plane of rotation, depicted in Figure 3.10.

Rotation in-plane analysis Let us assume that the crystal is rotating with angular rate
ω̇. The energy transmitted, per unit cell, E, by going through a diffraction condition is given
by

E =

∫
∆ω

1

ω̇
dω ∧

∫
Ω

IeI(g)dΩ, (3.97)

where Ie is the Thomson polarization factor, see §A.2, I(g) is the scattering power per unit
cell given by Equation (3.96), understood as power per solid angle, and dΩ is the solid angle
area element. In terms of the geometry of the Ewald sphere the solid angle is related to the
angular coordinates θ, η, see §3.3.2 by

dΩ = sin 2θd(2θ) ∧ dη. (3.98)

We would like to convert the integral of (3.97) over the coordinates dω∧ dΩ into an integral
over reciprocal space coordinates, dg, so that we obtain an expression of the form

E = Ê

(∫
I(g)dg

)
. (3.99)

Then we can use (3.96) to simplify (3.99).



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 167

Figure 3.9: Ewald sphere construction of a diffraction event, with reciprocal vector gi in the
plane of rotation generated by ω̇. The geometry of the construction of crossing the Ewald
sphere determines the diffracted power received by the detector. The geometric factor the
power is only a function of θ-location of the peak in this case.

To do this, we will compute the volume element induced by tracing the path of gI through
small changes in ω, and multiply by the solid angle area element in Equation (3.98). See
also (Cochran, 1948) for a similar method of computation.

The equation of the Ewald sphere gives that the magnitude of the reciprocal vector gI is

|gI | =
∣∣∣∣s− s0

λ

∣∣∣∣ = 2 sin θ

λ
, (3.100)

where s · s0 = cos 2θ, see Figure 3.13 and discussion associated with a general experimental
setup. As the crystal rotates, the reciprocal vector gI likewise rotates; the arc of this rotation
is traced in reciprocal space, as indicated in Figure 3.9. The tangent vector to the arc traced
by the reciprocal vector, projected on the normal to the Ewald sphere, s, is given by cos θ, as
indicated in Figure 3.9. This can be seen by geometric construction. Therefore the reciprocal
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Figure 3.10: Ewald sphere construction of a diffraction event, as in Figure 3.9, for the general
case when the reciprocal vector gi is not in the plane of rotation induced by ω̇. The diffracted
power received by the detector is determined by the η-location of the peak as well as by the
θ-location.

space volume element in the angular coordinates is given by

dg = −|g|dσ ∧ g,ω · sdω (3.101)

=
2 sin θ

λ
cos θdω ∧ dσ, (3.102)

where dσ is the solid angle on the reflection sphere. It is related to the solid angle on the
unit sphere by

dσ =
dΩ

λ2
=

sin 2θ

λ2
d(2θ) ∧ dη. (3.103)

With Equation (3.103) and (3.102) we can rewrite the expression for total energy, (3.97), as

E =
Ie
ω̇

λ3

sin 2θ

∫
I(g)dg. (3.104)
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In (3.104) we are making the assumption that the peak is tight enough so that the θ-
broadening is negligible, letting us remove it from the integration. For small particle appli-
cations, we may wish to integrate directly over the angular coordinates 2θ, η, ω. In that case
using (3.102) with (3.103) gives the volume element as

dg =
1

λ3
sin2 2θd(2θ) ∧ dη ∧ dω. (3.105)

Therefore combining (3.102) and (3.103), the total integrated energy using intensity over
angular coordinates becomes

E =
Ieλ

3

ω̇

∫
I(2θ, η, ω)

sin2 2θ
d(2θ) ∧ dη ∧ dω. (3.106)

Recall that the total energy computed in Equations (3.104), (3.106) were for the case of the
reciprocal vector in the plane of rotation of the crystal. Next we consider the general case,
where the reciprocal vector is not in the plane of rotation. The same computational ideas
apply - we seek the volume element generated by extruding the solid angle element on the
Ewald sphere along the tangent vector traced by a reciprocal vector as the crystal is rotated,
in order to relate the angular coordinates to the integrated intensity.

Out-of-plane rotation analysis. In this case it is convenient to formally parametrize
reciprocal space in terms of the diffraction angles, 2θ, η, ω as

g(2θ, η, ω) =
1

λ
(s1(2θ, η, ω)e1 + s2(2θ, η, ω)e2 + s3(2θ, η, ω)e3), (3.107)

where

s1 = − sinω(1− cos 2θ) + cos η cosω sin 2θ (3.108)

s2 = sin η sin 2θ (3.109)

s3 = cosω(1− cos 2θ) + cos η sinω sin 2θ. (3.110)

Note that the array (s1, s2, s3) is not a unit vector. These equations are obtained from the
analysis in §3.3.3. The normal on the reflection sphere is parameterized by 2θ, η as

s = eρ(2θ, η;−e3, e1, e2), (3.111)

where eρ(·) is defined in (A.1). In the expression for energy given by (3.97) the solid angle
dΩ is unchanged, but the result of the volume extrusion is changed from (3.102), which was
obtained for an in plane reciprocal vector. It is computed by forming first the path of the
reciprocal vector upon rotation, ω as

d

dω
Q(ω)gI

∣∣∣∣
ω=ω∗

= Q̇(ω)gI , (3.112)
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where ω∗ is the value of ω upon bringing gI onto the Ewald sphere, and Q(ω) ≡ R̂(e2, ω)
is the induced physical rotation of the sample by the stage. Then the volume element is
computed by projecting the path of the rotating reciprocal vector on the normal to the
Ewald sphere, which gives

dg = dΩ ∧
(
d

dω
Q(ω)gI

∣∣∣∣
ω=ω∗

· s
)
dω (3.113)

= dΩ ∧
(
cos η sin 2θ

λ3

)
dω (3.114)

=

(
cos η sin2 2θ

λ3

)
d(2θ) ∧ dη ∧ dω, (3.115)

where we have again used

dσ =
dΩ

λ2

and
dΩ = sin 2θd(2θ) ∧ dη.

Then using the expression for the volume element from (3.114), the energy, (3.97), becomes

E =
Ie
ω̇

λ3

sin 2θ cos η

∫
I(g)dg, (3.116)

where we are using the assumption of negligible angular broadening of the diffraction peak.
Should this not be the case, re-expressing (3.116) on angular coordinates using (3.115) gives
that (3.97) becomes

E =

∫
∆ω

1

ω̇
dω ∧

∫
Ω

IeI(g)dΩ (3.117)

=

(
Ieλ

3

ω̇

)∫
I(2θ, η, ω)

sin2 2θ cos η
d2θ ∧ dη ∧ dω. (3.118)

We can also arrive at (3.115) in a much cleaner fashion by considering the diffeomor-
phism between manifolds representing reciprocal space, being parametrized by the map
ξ(2θ, η, ω) = (s1, s2, s3) where si, i = 1, 2, 3 are given by (3.108)-(3.110). Then the volume
element is given by the standard formula

dg =
(√

detΞ
)
d2θ ∧ dη ∧ dω, (3.119)

where Ξij ≡ ξ,i · ξ,j. This computation is executed in Mathematica and results in

dg =

(
sin2 2θ cos η

λ3

)
d2θ ∧ dη ∧ dω, (3.120)
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which is equivalent to (3.115).
We have now an expression for the total energy integrated from a reciprocal lattice vector,

given by (3.104), and the more general (3.116). We now compute (3.99), the total energy
for a node. Using Equation (3.96) we have, after some rearrangement,∫

I(g)dg =
1

V Vc
F 2
hkl

∫
|Σ(g)|2dg

=
1

Vc
F 2
hkl, (3.121)

where we have used (3.41). The energy per unit cell is computed from (3.121) and (3.116)
as

E =

(
Ie
ω̇

)(
λ3

sin 2θ cos η

)(
1

Vc
F 2
hkl

)
. (3.122)

The total reflected energy for the whole crystal is then given by taking the product of (3.122)
times the number of unit cells

Etot = E
V

Vc
, (3.123)

where V is the total spatial volume of the crystal. Therefore for the same crystal (e.g. unit
cell is constant), increasing the macroscopic volume increases the diffracted intensity (lin-
early). To complete Equations (3.122), (3.123), the Thomson formula gives, for an initially
unpolarized beam4

Ie = I0r
2
e

(
1 + cos2 2θ

2

)
, (3.124)

where I0 is the nominal beam intensity. The full power is given by

P =
Etotω̇

I0
= r2e

(
1 + cos2 2θ

2

)(
λ3

sin 2θ cos η

)(
1

V 2
c

)
F 2
hklV (3.125)

= QhklV, (3.126)

where

Qhkl = r2e

(
1 + cos2 2θ

2

)(
λ3

sin 2θ cos η

)(
1

V 2
c

)
F 2
hkl. (3.127)

The factor (1 + cos2 2θ)/(2 sin 2θ cos η) is called the Lorentz factor (Guiner, 1963; Warren,
1969). When using a monochrometer, the Thomson formula does not apply and a correction
factor must multiply (3.127) in order to get the absolute intensity correctly. For details, see
Guiner (1963, p. 100). For the purposes of this work, we only use relative intensities so
the numerical value of this correction factor does not matter to the present work. The most
important results from the derivations leading to (3.127) are that we can now relate the
intensity picked up on a pixel of the detector to (1) the structure factor of the reflection, (2)
the diffraction angles of the peak, and (3) the physical volume of the crystal. These factors
will be important to consider in §3.5.

4see §A.2 for details



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 172

Summary. In this section we have arrived at the relationship between the reciprocal lattice
and X-ray diffraction intensity, using the Fourier transform operation. The reciprocal lattice
is an array of points in reciprocal space, corresponding to the spatial distribution of lattice
points in physical space. The importance of the reciprocal construction was revealed when
we showed that we can formulate the description of diffraction processes in a geometric
fashion: that diffraction occurs when a reciprocal lattice vector lies on the Ewald sphere.
To complete a predictive model of diffraction, we derived the resulting total energy recorded
by a detector, as a reciprocal lattice vector passed through the diffraction condition. This
required the introductions of the structure factor and Lorentz polarization factor, which
were both provided. This description for diffraction in terms of Fourier transforms will be
important to consider in §3.4.2.2 when we describe a forward model to simulate diffraction
intensities.

In the next section we further build on the deductions from this section, and recast
the reciprocal lattice in a more geometric context. Upon taking this perspective we can
reformulate some notions of experimental X-ray diffraction without using Fourier transforms,
in a framework more natural to mechanics work. We now present the details.

3.2.3 Geometric description for X-ray diffraction

In §3.2.2 we used the physics of coherent scattering of an array of atoms to motivate com-
putation of the Fourier transform of the physical lattice. It was shown that constructive
interference occurs for diffraction vectors, g, which are located on reciprocal lattice sites;
equivalently, when reciprocal lattice sites are coincident with the Ewald sphere. The rele-
vance of the reciprocal lattice to diffraction experiments was therefore established. In this
section the crystalline lattice is reexamined from a geometric point of view. This point of
view is natural to consider in order to couple the framework of continuum mechanics with
X-ray diffraction analysis.

We will first restate the basic formulation of a crystal lattice, and then quickly derive the
geometric construction of the reciprocal lattice. We then derive some kinematic results which
were suggested in the previous section, see Equation (3.15). Many of the results in this section
exist in other forms in the mechanics literature. In order to keep the treatment simple for
now, we will restrict the treatment to elastic deformations, so notions of material deformation
and lattice deformation will be identical. When plasticity occurs, lattice deformation and
material deformation are not equivalent, as was described in Chapter 2. However the results
of this section still carry over very well to that case, differing only in some details. A final
note is that in this section, the use of the term kinematic will be used to denote the idea of
deformation, and does not refer to the kinematic theory of diffraction, a term used previously
in this chapter.

As we have seen, a primary notion in the geometry of crystals is the existence of an array
of atoms which are generated by combinations of translations of three linearly independent
position vectors. To relate this array to a continuum field description, we can assign the
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position field according to the parametrization (see (3.47))

x(θ1, θ2, θ3) = θ1a+ θ2b+ θ3c, (3.128)

where a,b, c are constant lattice vectors, θi ∈ R, i = 1, 2, 3 and the position field x has
the property that a lattice point is defined to be at θ ∈ Z3. Therefore θi, i = 1, 2, 3 may
be considered the material coordinates for the body, a common construction in mechanics
analysis. In this convected coordinate formulation, the point defined by a particular values
of θ is the same material point throughout any deformation of the body. This is done so
that we can bring in the machinery from differential geometry and apply it to the mechanics
of the crystal, which we now proceed to exercise.

Having established the position field in the crystal by (3.128), the material tangent vectors
are defined by the traditional formula

gi =
∂x

∂θi
. (3.129)

Applying (3.129) to (3.128) gives that a ≡ g1, b ≡ g2, c ≡ g3. Therefore we have the
equivalent, compact representation of position referred to the lattice vectors as

x(θ) = θigi, (3.130)

where we are using the Einstein summation convention on repeated indices.
The kinematic metric of interest in material coordinates θi is induced by the Euclidean

metric, δ, in the spatial configuration,

δ = dxi ⊗ dxi, (3.131)

where we are using the notation of exterior calculus to denote the basis elements dxi. Using
the mapping from material coordinates to spatial coordinates, χ : R3 → R3,χ(θ) 7→ x is
given by

g = χ∗δ

= gi · gjdθ
i ⊗ dθj, (3.132)

where ()∗ denotes the pullback map. So that in material coordinates therefore the metric
components are

gij = gi · gj. (3.133)

To generate the reciprocal lattice, we can use the lattice vectors gi and use the relations

gi = Igi = gj ⊗ gj · gi = (gij)gj. (3.134)

Using gijg
jk = δki , and the uniqueness of matrix inverses, (3.134) gives the reciprocal vector

in terms of the lattice vectors as

gi = ĝi(g1,g2,g3) = [gij]
−1gj, (3.135)
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where [gij] denotes the matrix constructed from the components gij. The volume of the unit
cell, Vc, in physical space can be computed from

Vc = [g1,g2,g3] =
√
det gij. (3.136)

Likewise, the volume of the reciprocal unit cell, in reciprocal space can be computed from

V ∗
c = [g1,g2,g3]. (3.137)

To relate Equations (3.136), (3.137), we use (3.135) and the relations

[g1,g2,g3] = [g1jgj,g
2kgk,g

3mgm]

= g1jg2kg3mεjkm
√
g

= det [gij]
√
g

= det (gij)
−1√g

= (
√
g)−1 , (3.138)

where
g ≡ det gij = V 2

c , (3.139)

so that after substitutions (3.138) gives the result

Vc =
1

V ∗
c

. (3.140)

This was a required relation in (3.78). From another direction, we can consider a structural
deformation mapping from a Cartesian material coordinate system with coordinate directions
e1, e2, e3 into the lattice configuration, g1,g2,g3. This construction is developed further in
§3.3.5. Denoted this mapping as Fs, we have the sequence

Vc = [g1,g2,g3] = [Fse1,Fse2,Fse3] = detFs[e1, e2, e3] = detFs. (3.141)

On the reciprocal vectors we have
gi = F−T

s ei, (3.142)

so that

V ∗
c = [g1,g2,g3] = [F−T

s e1,F
−T
s e2,F

−T
s e3] (3.143)

= detF−T
s [e1, e2, e3] (3.144)

= V −1
c . (3.145)

We record here some further kinematic results relating the reciprocal lattice vectors to
the direct lattice vectors. For any three independent lattice vectors gi we can construct a
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reference configuration based around the measured state gi. Following common conventions,
we denote this triad by Gi. Then the evolution of lattice vectors occurs through the action
of a deformation gradient, F. In equation form, we have

gi = FGi (3.146)

for i = 1, 2, 3. Since the choice of the triad Gi is an arbitrary basis for the lattice (see
Figure 3.6, the relation (3.146) holds for any lattice vector Gi. Based on Equation (3.146)
and properties of the reciprocal lattice, a representation for F is given by

F = gi ⊗Gi. (3.147)

By direct computation, FF−1 = I so that

F−1 = Gi ⊗ gi, (3.148)

and
F−T = gi ⊗Gi, (3.149)

so that apparently
F−TGi = gi. (3.150)

That is, (3.150) maps reference reciprocal lattice vectors to their state in the current con-
figuration. Based on the arbitrariness of the sublattice Gi, (3.150) holds for any associated
pair Gi,gi. Therefore we can write

F−TG(i) = g(i), (3.151)

where (i) denotes the index into an enumeration of the reciprocal lattice points. For non-
simple lattices this enumeration is determined by the h, k, l extinctions from the structure
factor for the unit cell, see §3.2.2.3 for an example. Recalling that X-ray diffraction mea-
surements detect reciprocal lattice vectors, we can see that (3.150) forms the basis for strain
analysis using X-ray diffraction measurements of the reciprocal lattice.

Furthermore, only three reciprocal vectors suffice to determine F, once a reference con-
figuration has been defined. To see this, from (3.147), we can use

gi = [gi · gj]g
j = (gij)−1gj, (3.152)

where gij = gi · gj = [gij]
−1 is the reciprocal metric tensor. Therefore Equation (3.152) in

(3.147) gives F as
F = (gi · gj)−1gj ⊗Gi, (3.153)

an expression only in terms of the reciprocal lattice vectors, which are measurable from X-ray
diffraction.
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To relate this with other methods of strain determination, in traditional studies on bulk
materials, some components of the deformation F described by (3.146) may be obtained
experimentally with the use of a bonded resistance strain gage. The strain gauges mea-
sure the deformation on the surface of the material. For crystalline materials we have an
analogous X-ray diffraction measurement, with the kinematic relationship for any reciprocal
lattice vector given by (3.151). Therefore, X-ray diffraction experiments operate like a three
dimensional strain gage rosette. A difference is that the diffraction measurement has many
more ’gauges’ than is possible with a strain gage rosette: one gauge for each reciprocal lattice
vector.

More explicitly, for a strain gage rosette, the deformation of material lines is measured.
Since they are bonded, the gauge stretches along with the material. The resistance in
the gauge wire thereby changes. This change in resistance then gives an indication of the
(surface) strain in the material. To relate this to F, take a given gage element of length L,
aligned with the in plane direction e1. The gage element is described by the vector Le1.
Upon deformation by F, using (3.146), the new length of that line element is given by

l2 = L2Fe1 · Fe1 = L2C · e1 ⊗ e1, (3.154)

where l is the deformed gage length, and C ≡ FTF. The stretch in the gage is given by

l1
L1

=
√

C · e1 ⊗ e1 =
√
C11. (3.155)

Computing the same quantity for a gage oriented in the direction orthogonal to e1 gives

l2
L2

=
√

C · e2 ⊗ e2 =
√
C22. (3.156)

For a gage initially aligned with a third direction, coplanar with e1, e2, oriented at

er(θ = π/4; e1, e2),

we will introduce mixed terms so that(
l

L

)
θ=π/4

=
1√
2

√
C · (e1 + e2)⊗ (e1 + e2) =

1√
2

√
C11 + C22 + 2C12. (3.157)

Solving the three equations (3.155) - (3.157) for C11, C12, C22 gives a measurement of the
(surface) strain in the material. Similarly, for X-ray diffraction, we have the kinematic
relation (3.151) As in the strain gage example, equation (3.151) could be used with only
three measurements of reciprocal lattice vectors in the deformed and current configuration.
But generally these computations will have large errors, and there are more measurements
available since there are many reciprocal vectors than the amount of strain gages which could
be simultaneously bonded to the same spatial location. Since (3.151) holds for any associated
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pair g(i),G(i), we can form a least squares system over all detected pairs to determine the F
which minimizes the difference between the model ((3.151) and the experiment.

Thus, strain gage and X-ray diffraction measurements each characterize the deformation
of a material. Whereas strain gages measure the deformation of material lines, X-ray diffrac-
tion measures the deformation of reciprocal vectors. There are differences which should be
pointed out here between the two measurements. First, it is evident that material rotation
is not accessible from the basic strain gage method. This is evident from the fact that only
C was involved in the gauge equations. Arguing intuitively, the bonded gage rotates with
the material, and the electrical resistance does not change due to such rotations. For X-ray
diffraction, equation (3.206) enables both strain and rotation to be determined experimen-
tally. Secondly, the strain gage measurement is a measurement of total material strain. That
is, strain gages measure the deformation of material lines, and not just of lattice vectors.
This is an important distinction when considering plasticity of crystals. In plasticity the-
ory, the total deformation is given by F = HK−1, see Chapter 2, where H is called the
lattice deformation, K the plastic deformation. X-rays measure only lattice deformations
H. Therefore, the use of diffraction measurements in experimental plasticity must be com-
plemented by a simultaneous measurement of the total material deformation if one desires
to measure all kinematic variables. This is precisely what Taylor did in his fundamental
studies (Taylor and Elam, 1923), where material lines were scribed on the surface of the
material and visually measured at various stages of deformation, see Figure 1.1. Promising
modern techniques for such simultaneous studies include digital image correlation, where the
spatial position of points from a speckle pattern are tracked by a high resolution camera.
By combining these measurements with X-ray diffraction, the full deformation field can be
measured in an elastic-plastic deformation.

Vector bundle depiction of elastic-plastic body In Figure 3.11 is a depiction of the
vector bundle M

π−−→ B characterizing the geometry of an elastic plastic body. The state of
the body is described by its spatial location coordinate x, the local lattice deformationH and
local plastic deformation K. Equivalently, H,K can be replaced by the lattice deformation
and material deformation, H,F. Denote the bundle space byM = R3×GL(3,R)×GL(3,R).
The projections π : M → Ω, πF : M → TΩ ∼= GL(3,R), πH : M → GL(3,R) correspond to
the projections of the point of the body to spatial position, local material deformation gra-
dient, and local lattice deformation, respectively. X-ray diffraction measurements represent
the action of the function πH, with a weak coupling to the spatial projection π, as will be
shown later. Strain gauge or digital image correlation measurements represent the action of
the function πF, giving the material deformation. Digital image correlation experiments also
expose the projection π. In order to characterize the state of the body fully, all functions
π, πF, πH must be probed experimentally, through a combination of X-ray diffraction with
digital image correlation for example.

The picture of Figure 3.11 is an idealization, since there is no mention of the experimental
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limits on the resolution on the base space, Ω. In Figure 3.12, the action of X-ray diffraction
is more accurately depicted. A finite beam of width w probes the base space of the material,
x. Therefore X-ray diffraction measurements over a finite volume of material represent the
projection of the function H(x) into H-space. The incorporation of this projection into
analysis codes is recent; we give an in depth look at how to squeeze out some additional
information from the projection in §3.4.2.2.

p

p
H

H(x)

x

p
F

F(x)

H
F

x

Figure 3.11: Fiber bundle picture of elastic plastic bodies with application to X-ray diffrac-
tion. The bundle is of the structure M

π−−→ B where M = R3 ×GL(3,R)×GL(3,R) is the
bundle space and B is the spatial configuration of the manifold. The material tangent space
is coordinitized by F (through the material tangent vectors mi), the lattice tangent space
by H ∼= l . X-ray diffraction techniques measure the projection πH, other techniques are
required to obtain πF such as digital image correlation.

Summary. This completes the geometric description of crystal lattices. We now may
envision lattice deformation in a crystal equally as the evolution of the physical lattice under
F or of the reciprocal lattice under F−T, by using (3.151). The modifications of this treatment
for elastic plastic bodies are simply that F is replaced by H in (3.151). See §2.2.1 for more
background.
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Figure 3.12: Fiber bundle picture of X-ray diffraction. The X-ray beam has finite width
w. This means that the projection πH probed by X-ray diffraction is really the projection∫
Ω(w)

πH over a finite volume of material Ω(w) in the base space.
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3.3 Experimental - practical application

In this section details of the X-ray diffraction procedure used in this study are described. We
present data from several experiments performed at the Advanced Photon Source, Sector 1-
ID, Argonne National Lab. These experiments represent current state of the art capabilities
in high energy X-ray diffraction.

We previously made the analogy between X-ray diffraction measurements and electrical
resistance strain gauges. The reading of the X-ray diffraction ‘gauge’ is more complicated
than for the resistance strain gauge and hence requires the background development we cover
in this section. Although numerous software programs exist for analyzing X-ray diffraction
data of this sort (Gotz et al., 2000; Oddershede et al., 2010), the type of measurements
taken for this work required the writing of in house codes and analytical software tools.
For instance, a major undertaking for this thesis was spent developing analytical software
tools to analyze the data taken from such experiments in unexplored directions: quantifying
experimental precision and developing a modeling approach to quantify intragranular texture
of single grains in a polycrystal.

The experimental technique which will be focused on is a far field technique, which
uses high energy, monochromatic X-rays, (50-100 keV) produced by a synchrotron source.
In simplified terms, the outputs of the experiments in this study are the grain averaged
measurements of the lattice deformation H. See §3.2 for general background on X-ray
diffraction, and Chapter 2 for background on elastic-plastic deformation. We are also able
to obtain estimates for the grain averaged center of mass position, useful for reconstruction
of the polycrystalline configuration.

We begin with an introductory level overview of the particular class of X-ray diffraction
experiment used in this study. We will describe how one converts from the raw diffraction
data, the electromagnetic field intensity, to an estimate for the local lattice deformation.
We refer to this conversion from raw data to useful physical estimates as the data reduction
process. The diffraction images files are large O(GB) and hence impractical to use in a raw
state, hence the term data reduction has relevance. We give a detailed exposition of the
relationship between observed diffraction peaks and reciprocal lattice vectors. We also give
a brief discussion of grain indexing methods and illustrate a novel algorithm for indexing a
polycrystal. We also discuss general considerations of the lattice refinement procedure for
estimating grain averaged deformation from the X-ray measurements, as these procedures
differ between crystallographers and mechanics researchers.

3.3.1 XRD experiment overview

Generally stated, for our goals the purpose of an X-ray diffraction experiment is to obtain
the lattice deformation H of the crystal lattice, with respect to a fixed lattice configuration.
The electromagnetic field intensity diffracted by the material is the primitive experimentally
measured quantity which must be analyzed to obtain this output. In §3.2 we described how
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the spatial state of the atomic configuration affects the X-ray diffraction pattern, and we
derived the reciprocal lattice description. In this section, we will describe how one converts
from the raw diffraction data, the electromagnetic field intensity, (see Equation (3.122)) to
an estimate for the local lattice deformation. We refer to this conversion from raw data
to useful physical estimates as the data reduction procedure. This procedure involves many
steps which will each be explained in this section. We introduce a generic coordinate system,
useful for describing X-ray diffraction patterns, in order to facilitate quantitative descriptions.

3.3.1.1 General procedure.

In this section, an overview of standard methodologies for reducing data from raw diffraction
images to lattice structure information is given. In addition to general background informa-
tion, this exposition motivates the structure of the uncertainty analysis presented in §3.4.2.1.
In that section, uncertainty in the data at each step affects results derived from that data,
hence the hierarchical nature of the reduction procedure is emphasized here.

We specialize the foregoing discussion of X-ray diffraction experiment procedure to the
rotating crystal method (Milch and Minor, 1974; Cullity, 1978; Kabsch, 1988). Although the
details of experimental setups may vary from the setup used here, the general nature of the
treatment given in this particular case should serve as an example of the sort of computations
which must be undertaken in processing data from any X-ray diffraction experiment.

Before describing the experimental setup, we recall an important consideration for the
rotating crystal method. As described previously, in §3.2, for monochromatic radiation the
Ewald sphere is defined by the incident beam, s0 and the wavelength λ, see Figure 3.3. The
orientation of s0 with respect to the sample must be changed in order to allow more reciprocal
vectors to pass through the Ewald sphere surface, and thereby be observed as a diffraction
peak, see Figures 3.3-3.4. Physically rotating the crystal (instead of moving the beam) is
the easiest way to accomplish this procedure; more will be said shortly. Lastly, we consider
high energy (50-100 keV) X-rays, which have the effect of compressing the Bragg angles to
a small solid angle, so that a two dimensional detector may be used to record much of the
reciprocal space of the lattice (Poulsen et al., 1997; Poulsen, 2004). This compression has
the consequence of relatively poor reciprocal space precision, so that uncertainty analysis is
an important consideration. There are benefits to using high energy X-rays as well. For one,
deeper penetration into the material is possible, so that bulk deformation processes can be
probed by the method.

The main steps in the data reduction we consider are

1. assigning locations to the diffraction peaks (peak detection),

2. indexing the resulting dataset of peak locations to lattice orientations (grain indexing)

3. refining the parameters which characterize the lattice orientation and stretch, the de-
formation parameters (lattice refinement).
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Figure 3.13: Experimental setup for far field, high energy, monochromatic X-ray diffraction.
(a) X-ray beam with wavelength λ, direction s0 = −e3, (b) sample, mounted on rotation
stage with rotation axis p = e2, and rotation coordinate ω, (c) beam stop, (d) detector, at a
distance L0 from the rotation axis, (e) diffraction peak corresponding to a diffracted beam
with unit direction s(2θ, η).

We now describe each of these steps in greater detail, beginning with a general experimental
setup.

3.3.1.2 Lab geometry.

A schematic experimental setup is shown in Figure 3.13. Only major aspects of this figure
will be described in this section, further details will be given in §3.3.2. The components
of the experiment are the X-ray beam (a), the sample, mounted on a rotation stage (b),
the beam stop (c), and an area detector (d). A diffraction peak is indicated at (e). The
incident beam propagates in the direction s0 ≡ −e3 with wavelength λ. The rotation stage
has rotation axis p ≡ e2, and the angular rotation about that axis, induced by a stage motor,
is denoted by the coordinate ω. The intersection of the rotation axis and the beam center
is denoted O. In the general case, the center of mass of the sample may be precessed with
respect to the rotation axis, see Bernier et al. (2011) for further details required to handle
this situation. Precession is also addressed later in this chapter.

The detector is positioned a known position relative to O, and has a known orientation,
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e.g. in Figure 3.13 the detector is spanned by (e1, e2). The distance and orientation of the
detector are estimated from a calibration procedure by using the powder diffraction pattern
from a material such as LaB6, see (Bernier et al., 2011) for further details on the detector
calibration. Typically the distance to the center of the detector is described along the beam
direction, so that the detector is a distance L0, from O along s0. For our experiments, L0 is
on the order of 1 meter.

The detector consists of an array of X-ray sensitive pixels. In our experiments the size of
an individual pixel is approximately 200 µm. As the sample is rotated through an amount
δω, incident radiation diffracted by the sample is recorded by the pixels. We refer to the
intensity recorded by the pixel, integrated over an increment of rotation, δω, as the inte-
grated intensity. The magnitude of δω used is determined by experimenter choice apart
from hardware limitations at small δω. Typically, δω increments are chosen from the range
δω ∈ [0.25, 1] degrees.

We now break down the steps in the data reduction.

3.3.1.3 Raw data collection

The pixel data recorded after each δω step constitutes a two dimensional array of integrated
intensity values, each array is referred to here as a diffraction image. See Figure 3.14 for
an example of a diffraction image from a polycrystalline titanium alloy. These images are
recorded for a specified range of rotation angles, ω ∈ [ω0, ωf ], where ω0 is the starting position
for the scan, and ωf is the final position of the scan.

The entire set of images obtained for the chosen scanning range of ω constitutes what
will be referred to as the detector image stack. Define ∆ω = ωf − ω). Then, for example,
there are ∆ω/δω images like that in Figure 3.14 constituting the detector image stack. These
images are recorded for a specified range of rotation angles ω. Note that a complete scan
of the reciprocal lattice would require ω ∈ [0, π). This range may be restricted based on
experimental factors such as if a load frame is in use, which would prevent a full ω ∈ [0, π)
scan. In radial diamond anvil cell experiments, which may be the most angular-restrictive
experiment in common use, ω ∈ [0, 2π/3] is still readily possible with special design of the
diamond anvil cell. In the experiments presented later on, a tensile load frame was used,
which was restricted to ω ∈ [0, 2π/3].

3.3.1.4 Peak detection.

The detector image stack described in the previous paragraph, an element of which is shown
in Figure 3.14, represents the fundamental layer of diffraction data. The information encoded
in this data can be concisely described by a field of integrated intensity over image stack
coordinates as

E = E(p1, p2, ω), (3.158)
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Figure 3.14: An example image of the diffraction data from a single δω step. This image is
from polycrystalline titanium. The x and y values represent pixel coordinates on the 2048
by 2048 detector.

where E is the integrated intensity and p1, p2 denote general position coordinates on the
detector plane. In the peak detection step, the integrated intensity field is searched for
peaks; that is, where the recorded intensity is above some chosen threshold value,

E(p1, p2, ω) > Emin,

where Emin is the threshold intensity specified by the data analyst. The value of Emin can be
chosen to suppress unwanted background signals for example. The peaks with intensity above
the threshold value are then located and isolated from each other, substantially reducing the
size of the dataset.

Next, the data contained in each individual diffraction peak is (usually) further reduced
by fitting a local intensity distribution to a model. Conventional methods require simply
computing the intensity weighted average of the distribution, however we use a slightly
more informative approach. We describe the diffraction peak model we employed in greater
detail in §3.4.2.1. At this stage it is sufficient to understand that upon fitting the intensity
distribution to a model, the location of the center of the ith peak is expressed by an array
of three numbers (p̄1, p̄2, ω̄)

(i). In §3.3.3 we will show how these coordinates are related to a
reciprocal lattice vector g(i), which contains kinematic information about the state of strain
in the crystal.
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3.3.1.5 Indexing and fitting lattice deformation.

After the centers of all diffraction peaks in the image stack are obtained, giving the set
{(p̄1, p̄2, ω̄)(i) : i = 1, 2, ..., Npeaks}, we assign peaks to grains until all peaks are processed.
This is known as indexing the pattern, and is generally a challenging task for the case of a
polycrystal. See Lauridsen et al. (2001); Poulsen (2004) for further information on indexing
techniques.

The set of diffraction peaks assigned to a particular lattice orientation constitutes the
input data for obtaining the lattice deformation parameters, i.e., the orientation and stretch
of the lattice. As established in §2.2.1, the orientation and stretch parameters we are charac-
terizing are the components of a linear transformation from a chosen reference configuration,
κ, into the current configuration where diffraction was observed. This transformation may
be denoted Hκ to emphasize the dependence on the reference lattice κ. For elastic deforma-
tions, the transformation Hκ is equivalent to the deformation gradient, (Liu, 2002)

Fκ = Gradκ y =
∂yi

∂xj
ei ⊗ ej, i, j = 1, 2, 3, (3.159)

where x = xiei denotes position of a material point in the reference configuration, and
y = yiei denotes position of the same material point in the physical configuration. However
for plastic deformations, Hκ is not the gradient of a deformation (see Chapter 2, so (3.159)
can’t be directly applied for such cases. The parameters for Hκ are obtained by a procedure
called lattice refinement; more details of this procedure which will be explained later in this
section.

Upon obtaining Hκ for a particular grain, the data reduction is complete. One may
obtain stresses from Hκ measurements by using an elasticity model for the material under
consideration. For example, the Piola stress with respect to κ, Pκ may be obtained by
specifying a strain energy function, Wκ(H) for the material and computing

Pκ(H) =
∂Wκ

∂H
(H). (3.160)

In the rest of the section all quantities can be assumed to be dependent upon choice of κ
and we suppress the subscript.

3.3.1.6 Summary.

We summarize the data reduction process in the following flowchart:

E(p1, p2, ω) 7→
{
(p̄1, p̄2, ω̄)

(i)
}
, i = 1, ...., Npeaks 7→

{
H

(k)
ij

}
, k = 1, ..., Ngrains, (3.161)

where E(p1, p2, ω) is the intensity distribution in the image stack, (p̄1, p̄2, ω̄)
(i) are parameters

which represent the location of the ith diffraction peak, and H
(k)
ij are the i, j components
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of the lattice deformation for the kth grain. Experimental variance at the first layer of
data, E(p1, p2, ω), will affect the uncertainty in the peak center, (p̄1, p̄2, ω̄), which will affect
the uncertainty in the lattice deformation parameters, the Hij. One of our goals in this
chapter is to implement a framework which systematically communicates uncertainty from
the diffraction intensity to the overall lattice deformation parameters, and to be able to
state confidence intervals for the lattice deformation parameters based on a single rotation
scan through a range of ω. The uncertainties on the components Hij can then be used to
form confidence intervals on quantities derived from H, such as orientation relationships
and stresses, (3.160). Having confidence intervals on orientation relationships and stresses
directly influences the strength of conclusions that experimentalists can draw from their
observations, and completes the experimental program.

In the next sections we describe the data reduction steps introduced here in more details.
First we introduce a coordinate system which is natural to use for analysis of this class of
X-ray diffraction experiments. This coordinate system naturally parametrizes the location
of diffraction peaks, and hence, parametrizes reciprocal space. We will first describe the
coordinate system, and then give a general derivation of the conversion from this coordi-
nate system to reciprocal space. We will then describe indexing procedures and techniques.
Finally we will describe further details of the lattice refinement.

3.3.2 Angular coordinates

In this section we introduce an angular coordinate system which is useful for describing
the location of diffraction peak intensity distributions. We again consider the experimental
geometry shown in Figure 3.13, where the detector panel has been aligned so that its surface
is spanned by the vectors {e1, e2}. Note that in general, these vectors may not be the same
as the global Cartesian basis e1, e2. We consider the aspect of detector tilt in §3.3.3. Incident
radiation (a) propagates in a direction s0 = −e3, with wavelength λ. For simplicity consider
the case of a grain centered at the intersection of the rotation axis and beam at O, (b). We
will provide the analysis for the more general case of a precessed grain in §3.3.3. A diffraction
peak (e) is indicated on the detector (d). The unit vector representing the direction of the
diffracted beam, s, is conveniently parametrized with a spherical polar coordinate system
constructed on the bases (−e3, e1, e2). The azimuth is measured from −e3 and is denoted
2θ, and polar angle from e1 is denoted η, so that we have

s(2θ, η) = cos(2θ)(−e3) + sin(2θ)(cos ηe1 + sin ηe2). (3.162)

Note that the azimuthal angle 2θ also serves as the Bragg angle in the classical Bragg’s law

2d(i) sin θ(i) = λ, (3.163)

where d(i) is the planar spacing on the ith plane and θ(i) is the Bragg angle for this plane.



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 187

Proof. This can be seen by using the diffraction condition in the form (Boumann, 1957)

s− s0
λ

= gi, (3.164)

where gi is the ith reciprocal lattice vector. Using the relation

gi · gi =
(
d(i)
)−2

, (3.165)

and taking inner products of both sides of (3.164) gives

λ2

d2
= (s− s0) · (s− s0)

= 4 sin2 θ, (3.166)

where we have used s · s0 = cos 2θ = 1 − 2 sin2 θ in obtaining (3.166). Simplification of
(3.166) recovers Bragg’s law in the form (3.163).

Motivation for introducing these angular coordinates is evident when the diffraction peaks
are spread out due to intragranular mosaicity. An example diffraction peak is shown in Fig-
ure 3.15. The order of the tiles in the figure is such that the ω-location of the diffraction
image increases from left to right and top to bottom. Such curved peaks with spread along
the angular coordinate directions become approximately ellipsoidal distributions of intensity
in angular coordinates. Loosely, the spreading of a diffraction peak along the η direction, as

Figure 3.15: Image of a spot spread out in angular coordinates. The ω frames allocated to
the peak are also shown in increasing order, from left to right and top to bottom.

in Figure 3.15, is due to the presence of spatial gradients in the orientation of the crystal.
Spreading along the 2θ direction corresponds to gradients in the lattice strain. It is notewor-
thy that conventional methods of diffraction peak analysis do not differentiate between peaks
that are spread out and peaks which remain tight - for both cases, the intensity weighted
average is used. There is clearly potentially useful microstructural information in the nature
in which the peaks may be spread out. In §3.4 we give two different approaches which seek
to utilize this information.

In the next section we describe in detail how one may transfer between angular coor-
dinates of a peak (2θ, η, ω)(i)and a reciprocal lattice vector g(i). This transfer is the first



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 188

step in the data reduction where error propagation should be considered, since identifying a
particular location to the peak in Figure 3.15 must necessarily come with some uncertainty
in that location. The process of converting to a reciprocal vector also involves calibration
constants representative of the experimental setup, whose uncertainty also contributes to
the final uncertainty in the components of the reciprocal vector.

3.3.3 Conversion to reciprocal space coordinates

In this section we give a treatment of the conversion between the spatial location of a
diffraction peak and its preimage in reciprocal space. The motivation for including this
section is that it is common in the crystallography literature to give confusing algebraic
formula with a low degree of what we would call, ‘invariance of application’; that is, the
type of information which can be applied to different situations which may differ from those
presented in the literature contributions. Here, we use a concise geometric construction, so
that those with comfort in direct vector notation can readily apply the following relations
for their particular geometry.

In addition to the two dimensions used to describe diffraction peaks in the previous
section, p1, p2 or 2θ, η, the experimental stage rotation coordinate ω is appended to fully
parametrize the observation of diffraction peaks5. Aspects of this stage rotation were de-
scribed in §3.3.1.1. In this section we also account for grains offset from the rotation axis, so
that the grain averaged center of mass location is denoted by x = x̂(ω). Incorporating the
stage rotation, whose action is denoted by Q, and the precession, and consulting Figure 3.13,
the position of a diffraction peak relative to O may be written as

r = Q(p, ω)x0 + ρs(2θ, η), (3.167)

where r is the spatial position of the diffraction peak relative to O, Q(p, ω) is the stage
axis rotation about p with angular coordinate ω, and x0 is the position of the diffracting
material at ω = ω0, some reference ω location, ρ is the spatial distance between the diffracting
material (grain center-of-volume) at the ω location of the observation, and s is the unit vector
describing the direction of the diffracting beam relative to the ω location of the observation.
We suppress the functional dependencies for Q, s, and ρ in the rest of this section for reasons
of appearance. Also note that in (3.167) we are using slightly different angular coordinates
than that depicted in Figure 3.13: here the angles 2θ, η are defined with respect to the
current grain position x = Qx0 instead of the intersection of the rotation axis and the beam,
O.

5It bears repeated that for a diffraction peak as shown in Figure 3.15, describing the location of the
diffraction peak by a three dimensional parametrization 2θ, η, ω is associated with some loss of information,
and some uncertainty in the precise location of the peak. This uncertainty will then be communicated to
the lattice deformation estimate. We will examine the effect of this peak location uncertainty in §3.4.2.1.
We will also describe an approach to analyzing more of the local integrated intensity, using a forward model
prediction of the lattice state, in §3.4.2.2.
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Consider the rectangular pixel array constituting detector to be aligned with the or-
thonormal basis e′1, e

′
2, which generally differ from the laboratory basis e1, e2 due to errors

in beam-detector alignment. The detector basis is related to the laboratory basis by

e′i ≡ Rtei,

where Rt ∈ SO(3,R) is the tilt of the detector panel. Rt is described by a parametrization
of SO(3,R), written as Rt = R̂t(t1, t2, t3). The detector image stack is parametrized by
p1, p2, ω. Positions of peaks in the detector image stack, (p1, p2, ω) are related to (2θ, η, ω)
coordinates by the geometrically equivalent statements

r = p1e
′
1 + p2e

′
2 + L0(−e3) = ‖r‖ [cos 2θ(−e3) + sin 2θ(cos ηe1 + sin ηe2)] , (3.168)

where ‖r‖ =
√
r · r is the spatial distance between O and the detector position (p1, p2) are

defined relative to the beam location on the detector (projection of O along s0 on the detec-
tor). Given the p1, p2 location of the peak, the functions η = η̂(p1, p2, L0), 2θ = 2θ̂(p1, p2, L0)
can be solved for by taking inner products of (3.168) with e1, e3 in succession and solving
the resulting equations.

Next we relate the position of a peak r to the reciprocal space vector preimage, g(i).
There is much geometric information contained in Equation (3.167). First consider the inner
product with the incidence beam direction s0 ≡ −e3. To avoid cluttering the equations, let
us consider the effect of no detector tilt, so that r · s = L0, from (3.168)1. We obtain

r · s0 = Qx0 · s0 + ρs · s0 =⇒
L0 = Qx0 · s0 + ρ cos 2θ. (3.169)

Furthermore, solving for ρ and noting that ‖s‖ = 1 we have

ρ = ‖r−Qx0‖. (3.170)

The parametrization of the stage rotation Q can be profitably written as

Q = e2 ⊗ e2 + (e1 ⊗ e1 + e3 ⊗ e3) cosω − (e3 ⊗ e1 − e1 ⊗ e3) sinω. (3.171)

Next consider the diffraction requirements that for diffraction to occur, a reciprocal vector
must lie on the Ewald sphere, see §3.2. Therefore a diffraction peak, located by s must
satisfy

s− s0
λ

= gi, (3.172)

where gi is a reciprocal lattice vector in the current (rotated by Q) state of the crystal. At
the reference location ω = ω0 we have the relation

gi = Qgi, (3.173)
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where gi is the reciprocal vector in the spatial configuration of the lattice at the reference
rotation ω = ω0. Rearranging (3.172) and use of (3.173) gives the forward model

s = λQgi + s0, (3.174)

which will be used later in §3.4.2.2, where we simulate diffraction peak intensities based on
the state of the crystal lattice (hence gi). Returning to the inverse problem, determining
gi(s, ...), from (3.167), we have the geometric statement

s(L0, ω, t,x0, p1, p2) =
r(p1, p2, L0, t)−Q(ω)x0

|r−Qx0|
, (3.175)

where all functional dependencies are highlighted, r is given by (3.168), and t = (t1, t2, t3).
From (3.172) and (3.173) we have the relation between reciprocal space and geometry written
as

gi(L0, ω, t,x0, p1, p2, λ, s0) =
1

λ
QT[s(L0, ω, t,x0, p1, p2)− s0], (3.176)

where s is given by (3.175). Clearly any error in any of the fundamental arguments L0, ω,
t, x0, p1, p2, λ, s0 will lead to error in the computation of gi. The formula simplify when
the precession is neglected, by taking x0 = 0. In that case we can use

λgi · p = QT(s− s0) · p, (3.177)

and with (3.171) we have
λgi · p = p · s, (3.178)

noting that p ≡ e2. Then we have

λgi
2 = p · s = sin 2θ sin η, (3.179)

λgi
1 = QT(s− s0) · e1, (3.180)

and

λgi
3 = QT(s− s0) · e3. (3.181)

With the representation for Q in (3.171) and the spherical polar parametrization for s as

s(2θ, η) = cos 2θ(−e3) + sin 2θ(cos ηe1 + sin ηe2), (3.182)

we have

QTs = e2 sin 2θ sin η

+ e1(sin 2θ cos η cosω + sinω cos 2θ)

+ e3(sinω sin 2θ cos η + cosω cos 2θ), (3.183)
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and
QTs0 = e1 sinω − e3 cosω. (3.184)

Therefore

QT(s− s0) = (−(1− cos 2θ) sinω + cos η cosω sin 2θ)e1 (3.185)

+ sin η sin 2θe2 (3.186)

+ (cosω(1− cos 2θ) + cos η sinω)e3. (3.187)

So finally Equation (3.176) is established where the second factor on the right hand side is
given by (3.187).

The presence of lattice deformation alters the components of the reciprocal vector, gi

with respect to the configuration κ. The measured reciprocal vector gi has preimage in the
reference configuration, denoted Gi. The mapping between Gi and gi will be shown to be
given by

gi = H−TGi. (3.188)

Therefore with respect to a reference configuration the forward model (3.174) becomes

s = λQ(ω)H−T(Θ)Gi + s0, (3.189)

where Θ denotes parameters characterizing the deformation. In a later section we will use
Θ = (R,U), where H = RU is the polar decomposition of the non-singular transformation
H. In a traditional crystallographers approach, Θ = (Hs,R), where Hs is the structural map
from a reference cube to the prerotated configuration. Both approaches have dimΘ = 9. A
comparison and translation between the two methods is described in §3.3.5. For the case of
a precessed grain, the use of (3.189) is combined with (3.175). The refinement problem is
then over the array Θ = (H,x) so that dimΘ = 12. Looking ahead, in §3.4.2.2 the list of
parameters Θ is further expanded to account for the presence of spatial inhomogeneities in
the lattice deformation, H = Ĥ(x).

Once the data in the form of diffraction peaks locations have been converted to the form of
reciprocal lattice vectors (e.g. components), the lattice deformation may be estimated based
on the relations (3.188). Starting from the raw list of reciprocal vectors, the refinement is
typically done in two steps. The methods for the two steps differ greatly from each other.
This is because at the first stage of analysis, we do not know the membership correspondence
between reciprocal vectors in the data and grains in the polycrystal. We only have a collection
of diffraction peaks (and hence, reciprocal vectors).In other words, for each gi we do not know
the corresponding Gi in the reference lattice configuration, since such information requires
knowledge of H through (3.188).

In the next section we will discuss the first step, called grain indexing. The function
of indexing is to obtain the unknown associations between gi,Gi. Following that, we will
describe the final lattice refinement procedure which gives a finer estimate forH, but requires
the completion of grain indexing before attempting.
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3.3.4 Indexing

In this section we briefly describe grain indexing procedures for the analysis of X-ray diffrac-
tion data. Grain indexing algorithms are an interesting topic of applied mathematics in
their own right, but are a vital component for diffraction experiments when the states of
single crystals must be independently distinguished from a polycrystal. From a semantic
point of view, we can describe the indexing program as coarse lattice refinement, in that we
obtain an estimate for the rotation component, R of H = RU. The final stage of lattice
refinement is discussed in §3.3.5, but indexing must be performed for the final refinement to
be possible. The primary task of the indexing step is creating the pairs

(
Gi,gi

)
, between

reciprocal lattice vectors in the configuration κ and the current configuration, at a reference
state of the rotation stage, Q = Q(ω0). This process is easier in terms of computational
algorithms with a single grain than for a polycrystal (< 1000 grains) but the procedures are
the same for both.

We briefly summarize conventionally deployed indexing algorithms, and suggest a pro-
posed novel formulation. Conventional methods are generally excellent; the different for-
mulation is given here mostly as an interesting example of applications of the geometry of
orientation space.

3.3.4.1 Standard indexing method.

In §3.3.1.1 and §3.3.3 we described how raw diffraction data is transformed into reciprocal
vectors. The reciprocal vector data is then the fundamental data for the indexing algorithm.
The X-ray diffraction data set is then written

M = {gi : i = 1, 2, ..., Nobs},

where Nobs is the number of observed reciprocal lattice vectors in the entire sample.
A hypothetical indexing procedure can be stated as follows. First, define the set of

observable reciprocal lattice vectors in κ by

H ≡ {Gi, i = 1, 2, ..., Nrefl(λ)},

where Nrefl(λ) emphasizes the dependence of the size of the observable reference lattice on
the chosen wavelength. This definition is meaningful because lattice strains are generally
small, otherwise the observable set would be dependent upon the lattice strain.

Then, for each H ∈ GL(3,R), test the data set M for the membership

H−TGi ∈M (3.190)

for all observable Gi ∈ H. Since this is experimental data, the condition in (3.190) must
involve some tolerance, denoted by tol. Then the indexing problem is stated as determining
the set

{H : for Gi ∈ H : ‖H−TGi − gi‖ < tol}, (3.191)
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where ‖ · ‖ is an appropriate norm (the Euclidean norm is fine). The function evalua-
tions prescribed by Equation (3.191) is prohibitively expensive to compute - the space
dimGL(3,R) = 9 is large. However since elastic deformations are typically small, we can sim-
plify the search space by taking H ≈ R, where R ∈ SO(3,R). Then since dimSO(3,R) = 3,
the computational search space is tractable. Considerations of material symmetry further
reduce the size of the space which must be probed.

We summarize the above indexing problem in words: rotation space SO(3,R) is parametrized
via Euler angles or angle axis parameters, and we search this space for rotations which have
good agreement between the mapped reference configuration reciprocal vectors H−TGi and
the observed reciprocal vectors gi. The indexed set is written

{H : H ∈ SO(3,R), and for Gi ∈ H : ‖H−TGi − gi‖ < tol}. (3.192)

One approach to practically solving the indexing problem is clearly a brute force method:
discretize the three dimensional rotation space with some chosen resolution, and test each
nodal point in the discretized space for agreement with the data. Here ‘agreement’ is deter-
mined by: for each trial H, the percentage of Gi ∈ H which are found to have images in M .
If agreement is above a threshold of completeness, remove the matched reciprocal vectors
from M and continue. A typically used threshold might be 75%. For polycrystals, results of
the indexing can be sensitive to tolerances on testing the membership conditionH−TGi ∈M .
Too stringent of a tolerance and zero grains may be found, too loose a tolerance and many
spurious grains may be found in the data, leading to erroneous results.

As an alternative, we next present an approach which is based on calculation of the
distance between two orientation fibers. If the fibers intersect, this point defines a trial ori-
entation to test for completeness, (3.192). Essentially, the fiber intersection in this approach
boils down to computing eigenvalues of a 2 × 2 matrix, which, at least on simulated data,
is faster than the other indexing methods which require some notion of discretization and
subsequent probing of some space.

3.3.4.2 Alternate indexing approach - introduction.

In the following treatment, we will denote Rg ∈ SO(3,R) as the orientation of the grain we
are seeking to determine. As stated in the previous section, given an arbitrary measured
reciprocal vector gi, we can extract the possible family of reciprocal vectors in the reference
lattice configuration by knowledge of the reference crystal structure, which gives the set
of {Gi}, the reciprocal vectors characteristic of that particular structure. Specifically, the
magnitude of the measured vector gi can be used to subset the possible Gi which have the
same magnitude and are possible generators for that particular measured vector through the
mapping gi = RgG

i. Note that Rg ∈ SO(3,R) =⇒ R−T
g = Rg, when applying (3.188).

Next, given a potential correspondence Gi → gi we can generate a one parameter family
of rotations which give identically the correspondence Gi → gi. We can see this by observing
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that the set
R = {Rs : RsG

i = gi} (3.193)

has |R| > 1 To see this, given an Rs which satisfies (3.193) we can operate by a second
rotation with rotation axis gi without changing the result, e.g. the equation

gi = R̂(gi, θ)RsG
i (3.194)

is valid for any value of θ. Here recall that the function R̂(gi, θ) is the rotation tensor
with rotation axis being the unit vector parallel to gi, and with rotation angle θ, see (A.5).
We can construct an rotation Rs which satisfies (3.193) in a unique way by computing a
rotation taking Gi to gi as the rotation about the axis defined by Gi×gi with rotation angle

cos−1(Ĝi · ĝi). Define this rotation by Rbase(G
i,gi). In terms of angle axis parameters

Rbase(G
i,gi) = R̂(Gi × gi, cos−1(Ĝi · ĝi)). (3.195)

We can then operate on the rotation Rbase by a rotation with axis gi and any rotation angle
θ ∈ [0, 2π]. The result of this combination is a one parameter family of rotations which map
Gi → gi. In other words, we have the family of rotations satisfying gi = RtestG

i where

Rtest(θ;G
i,gi) = R̂(gi, θ)Rbase(G

i,gi). (3.196)

The family of rotations parametrized by (3.196) is called an orientation fiber. The question
of grain indexing previously stated thus can be restated as: given two measured reciprocal
vectors, g1, g2, and two possible generator reciprocal vectors for those measurements, G1,
G2, does there exist, for each fiber Rtesti(G

i,gi), i = 1, 2, a point of intersection between the
two one parameter families of rotations. That is, for some θ1, θ2 along the two respective
fibers, (3.196), do we have

Rtest1(θ1) =?Rtest2(θ2). (3.197)

If (3.197) is true, then there is evidence to suggest that there exists a grain with Rg =
Rtest1(θ1) = Rtest2(θ2). The data structure M can then be probed by this Rg to see if the
completeness condition is met at this intersection point.

We now reduce the problem of fiber intersections to determining the eigenvalues of a 2
by 2 matrix. Here we use quaternion geometry for describing elements of SO(3,R). The
quaternions have a one-to-one correspondence with S3, the unit sphere in R4, and doing
all operations in R4 lends some profitable reductions in the problem formulation. There-
fore, from here on, any multiplication involving quaternions should not be confused with
quaternion multiplication; only their representation on S3 ⊂ R4 is used to do some vector
operations.

The one parameter family of rotations given byRtest(θ,G
i,gi) in (3.196) generates a path

around S3 which is a geodesic. Employing a hyper-spherical-coordinate chart on S3 exposes
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the geodesics in a simple way, and we can achieve some nice benefits from this property. The
coordinitization used for a quaternion p is

p(α, β, γ) = cosαe4 + sinα(cos βe3 + sin β(cos γe1 + sin γe2), (3.198)

where α, β ∈ [0, π], γ ∈ [0, 2π] and the basis vectors eα, α = 1, 2, 3, 4 are orthonormal under
the standard Euclidean metric, e.g. eα · eβ = δαβ. That this parametrization ‘exposes’ the
geodesics in a simple way is a result of the following viewpoint: the equator of S3 may be
described by the one parameter path given by p(π/2, π/2, 2πt), t ∈ [0, 1]. Noting that any
geodesic on S3 can be reduced to this ‘equatorial’ form with a corresponding re-association,
that is, an R4 → R4 rotation of the 4-basis {eα}. In other words, when the basis elements
{eα} are aligned correctly with the one-parameter fiber path traced out by the rotations, the
path is simply given by p(θ) = cos θe1 + sin θe2, θ ∈ {0, 2π}. Note that e1, e2 ∈ S3 ⊂ R4,
and the way the basis e1, e2 may be found in terms of the fiber will be explained next.

3.3.4.3 Fiber plane basis construction

The construction of the basis vectors e1, e2 which span the plane in R4 on which the one
parameter family of quaternions lies can be generated in the following procedure, which is es-
sentially a Gram-Schmidt basis construction procedure. Recall that the fiber is given in terms
of rotation matrices as Rtest(θ;G

i,gi) = R̂(gi, θ)Rbase(G
i,gi), and that Rtest(0;G

i,gi) =
Rbase(G

i,gi) since R̂(gi, 0) = I. The quaternion representation for Rtest(0;G
i,gi) will be

denoted as q0. By the parametrization p(θ) = cos θe1 + sin θe2, where at each θ, p(θ) gives
the quaternion representation for Rtest(θ;G

i,gi), it is evident that a logical choice for e1 is
q0, so hereby define

e1 ≡ q0 ≡ Rtest(0;G
i,gi). (3.199)

Next use the fact that for Rtest(θ;G
i,gi), θ 6= 0, the resulting quaternion form of Rtest,

denoted as qθ lies in its geodesic plane P , with P = {p|p ∈ span(e1, e2)}. By removing the
qθ component along e1 via a projection, the leftover component qproj is written

qproj = 1[e1]qθ, (3.200)

and is orthogonal to e1. By unitizing qproj we obtain the basis vector e2, e.g.

e2 ≡
qproj

‖qproj‖
, (3.201)

With these bases, e1, e2 given by (3.199), (3.201), qθ ∈ P for all θ ∈ [0, 2π].

3.3.4.4 Distance to fiber computation.

Now we consider the comparison of two fibers, constructed from the pairs (G1,g1), (G2,g2).
Denote the fiber constructed from (G1,g1) as f1, and the fiber constructed from G2,g2 as
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f 2. Denote the basis vectors for f 1 as a1, a2 ∈ R4 and for f 2 as b1,b2 ∈ R4, where these
bases are constructed through the procedure described in the previous paragraph. We are
using ai,bi for the basis in preference to something like e1i , e

2
i . We seek to find if the fibers

intersect at a point along their path, and if so, what the rotation corresponding to that point
is.

To accomplish this, consider the following procedure: take one of the fibers (f 1, say) as
the native space on which to do the distance-to-fiber comparison. As f2 is traversed (by
adjusting θ), project the quaternion described by f 2 onto the plane containing f 1, by the
projection tensor with represented as a1 ⊗ a1 + a2 ⊗ a2. This tensor takes any x ∈ R4 and
projects it onto the plane containing f1. Since the fiber f2 can be described in terms of its
basis {b1,b2} as p(θ) = cos θb1 + sin θb2, we write out the projection operation as:

1p(θ) = (a1 ⊗ a1 + a2 ⊗ a2)[cos θb1 + sin θb2]

= (a1 · b1 cos θ + a1 · b2 sin θ)a1 + (a2 · b1 cos θ + a2 · b2 sin θ)a2. (3.202)

In other words, if x = x1b1 + x2b2 is the initial point along the f2 geodesic, the projection
onto a1, a2 is given by

x̂ = 1x = (x1a1 · b1 + x2a1 · b2)a1 + (x1a2 · b1 + x2a2 · b2)a2. (3.203)

This may be viewed more clearly as a linear transformation from x ∈ span(b1,b2) → x̂ =
F(p)x ∈ span(a1, a2) where

F(p) =

[
c11 c12
c21 c22

]
, (3.204)

with c11 = a1 · b1, c12 = a1 · b2, c21 = a2 · b1, c22 = a2 · b2. Here the superscript (p)
is used to convey the idea of projection. When F(p) is non singular, which will generally
be true, barring pathological cases which can be handled by examining other fibers, the
polar decomposition theorem applies. Therefore we can find an orthogonal matrix R(p), and
symmetric positive definite matrixU(p) such that F(p) = R(p)U(p). We can constructU(p) via
a spectral decomposition of C(p) = (F(p))TF(p) =

∑2
i (λiui⊗ui), through U(p) = (C(p))1/2 =∑2

i

√
λiui⊗ui, and R(p) via R(p) = F(p)(U(p))−1. This is useful because the closest distance

between f1 and f 2 is proportional to the largest eigenvalue of U(p). If U(p) has an eigenvalue
of 1, then the two fibers do in fact intersect somewhere along their trajectories on S3. The
value of the quaternion at this intersection point is found by letting R(p) operate on the
eigenvector of U(p) which has eigenvalue 1, and then expressing this on the R4 basis a1, a2

to obtain the quaternion at the intersection. This intersection quaternion is then mapped
to the fundamental region, Qfund for the crystal and denoted as the generating Rg ∈ Qfund.
The fundamental region is defined operationally in §A.1. By repeating this process for each
pair of fibers in M the grains’ orientation can be found.
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3.3.4.5 Examples

Here is shown a few plots of the fiber previously denoted as f1 (as it is traversed by θ ∈
[0, 2π]), plotting on its own plane with basis a1, a2 ∈ R4, along with a second fiber f 2

traversing its own plane spanned by basis b1,b2 ∈ R4, but with points on the fiber f 2

projected into the basis a1, a2. This was shown in the previous paragraphs to define a linear
transformation with a polar decomposition into R(p),U(p). The symmetric positive definite
multiplicative factor (U(p)) has real eigenvalues with useful interpretation: if an eigenvalue
is 1 then the fibers f 1, f 2 intersect at some quaternion, thus indicating they came from the
same grain orientation. This quaternion at the intersection is described by the operation of
R(p)u1, where u1 is the eigenvector of U

(p) associated with the eigenvalue of value 1. To get
the quaternion, recognize that R(p)u1 was expressed on the basis a1, a2, so the representation
for this quaternion would be

qisect = (R(p)u1 · a1)a1 + (R(p)u1 · a2)a2, (3.205)

that is we simply resolve the intersection point R(p)u1 on the basis a1, a2.
Figure 3.16 shows the results of plotting f 2 on the basis generated by f 1 for two reciprocal

vectors which where constructed as originating from the same grain. Therefore the fiber pro-
jections are seen to intersect at a given quaternion. The fiber f 1 in its plane span (a1, a2) is
a circle, as expected. The straight lines across the diagonal denote the maximum eigenvector
of U(p), and the mapped vector R(p)u1. In the figure it is clear that R(p)u1, the major axis of
the projected ellipse, is hitting the correct intersection point between f1, f 2. In an indexing
algorithm, the intersection point R(p)u1 would then be used to test for completeness in M .

Figure 3.17 and Figure 3.18 show the resulting geodesic projections for two fibers which
come from different base orientations, Rg, so that there is no intersection. The maximum
eigenvalue for U(p) upon calculating the polar decomposition of (3.204) would therefore be
less than 1. In an indexing algorithm, these two fibers would then not be used to generate
a trial orientation to test for completeness; the algorithm would proceed to the next pair of
trial fibers and repeat the calculation.

3.3.4.6 Summary

This section has described the ideas behind the indexing of diffraction patterns coming from
polycrystalline materials, and has suggested an indexing algorithm. The viability of indexing
methods is measured by the computational efficiency and effectiveness of the algorithm. In
this method, the main computational expense comes from

1. Solving for eigenvalues of (F(p))TF(p) (F(p) as defined in (3.204))

2. Gram-Schmidt construction to find the basis for the plane containing the fiber f i

These requirements are therefore more attractive than the brute force search methods, since
a check of the eigenvalues of a 2-by-2 matrix takes fewer computational time than querying



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 198

fiber on    ,f
1

a   a
1 2

fiber on    ,f
2

a   a

u

Ru

1 2

1

1
0

1

-1
-1 0 1

Figure 3.16: Diagram of the projection of fiber f 2 onto the plane containing fiber f 1 for
G1,g1 and G2,g2 coming from the same grain orientation. The eigenvector of U(p),u1 is
plotted, along with R(p)u1, the major axis of the ellipse. Notice the intersection since these
fibers come from the same grain rotation.

the entire reflection data structure for completeness. In simulations, this method is faster and
more efficient than such brute force methods. However, when applied to experimental data
which contains noise, the precision at which fiber intersections is determined by obtaining the
eigenvalues of U(p) is lacking. The tolerance on the eigenvalue check of U(p)(f 1, f 2) must be
opened up to the point where the potential advantages of the method in reducing the amount
of trial orientations disappear rapidly, since many spurious orientations are still tested for
completeness. It is possible with further tweaking of the tolerances that a robust solution
can be found. In any case, the method has some interesting features that may prove useful
for the indexing of certain materials. A potential application might be for the indexing of
low symmetry materials, where the probe space required for a brute force approach is large
(since there are few reductions in the size of the orientation space).

This concludes the information on grain indexing, which constituted the first step of lat-
tice refinement by obtaining estimates for H from the data set of reciprocal vectors, M . In
the next section, we consider the second step of lattice refinement. The finite deformation
framework described here differs from conventional approaches, from both crystallographers’
approach, and from a conventional infinitesimal strain approach. We describe our approach
and compare the other approaches. We describe how our approach reduces to the infinitesi-
mal strain approach, and we quantify the error made in the infinitesimal strain approach.

3.3.5 Lattice refinement strategies

In this section6we consider the final step of lattice refinement, after the indexed pairs in the
reference lattice configuration gi,Gi have been obtained. After grain indexing, we have an
approximation for the rotation factor R of the lattice deformation H, effectively assuming

6Some of this section is taken from (Edmiston et al., 2012)
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Figure 3.17: Plot of the projection of fiber f 2 onto the plane containing fiber f 1 forG1,g1 and
G2,g2 coming from the different grain orientation. The projected geodesic does not intersect
the base geodesic, and the eigenvalues of the projection tensor (3.204) would therefore be
less than one. In algorithms, this indicates that these fibers do not come from the same
grain, and the next fiber is then checked.

U ≈ I. We now would like to obtain a more accurate estimate of H, by refining the estimates
for R,U. The basic relation we exploit is

gi = H−TGi, (3.206)

which holds for the pairs gi,Gi. These pairings are available after the indexing step described
in §3.3.4.

There are various ways of implementing the kinematic relation (3.206) in order to obtain
an experimental estimate of H. To motivate different ways we may use this relation, consider
the traditional decomposition for a deformation F,

F = mi ⊗Mi, (3.207)

where i = 1, 2, 3, and the pairs mi,M
i are specifically chosen tangent and reciprocal tangent

vectors in the deformed and reference configurations. In this formulation, one only needs to
select the reference reciprocals Mi, obtaining the reference tangent vectors Mi from these.
Then the mi are defined by convecting Mi through the action of F:

mi ≡ FMi. (3.208)

For the present consideration of X-ray diffraction analysis, we are interesting in applying
this result to lattice and reciprocal lattice vectors. Therefore we similarly write

H = gi ⊗Gi, (3.209)

where the pairs gi,G
i are interpreted lattice and reciprocal lattice vectors in the deformed

and reference configuration, respectively. Although X-ray diffraction only directly measures
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Figure 3.18: A second plot of the projection of non-matching grain orientations for the two
fibers f1, f 2 . There is a distinct gap between the fiber f 1’s path and fiber f2’s path, with
no intersections.

the reciprocals gi,Gi, we can compute the lattice vectors gi by the simple relations

gij = gi · gj (3.210)

and
gij = (gij)−1, (3.211)

giving
gi = gijg

j = [gij]
−1gj, (3.212)

so that

H = gi ⊗Gi

= (gij)−1gj ⊗Gi. (3.213)

Here gij is the lattice metric tensor, and gij is the reciprocal lattice metric tensor. Equa-
tion (3.213) therefore only contains information which can be directly obtained from X-ray
diffraction measurements, that is, from measurements of reciprocal lattice vectors in the
deformed and reference state. From (3.213), it is evident that only six reciprocal vector
measurements are required to fully characterize the lattice deformation H: gi,Gi, i = 1, 2, 3,
by measuring a reciprocal lattice vector in a reference state with the same reciprocal lattice
vector in the deformed state. If the reference structure is known before hand, only three
observations are required. However, we will see later that (3.213) is not actually all that
useful in experimental crystallography, due to the requirement of needing to index a crystal
initially to actually obtain the pairs gi,Gi which make constructing (3.213) possible in the
first place. In addition, using (3.213) directly would be prone to errors in the individual
measurements of the reciprocal vectors gi. In order to increase the precision of the mea-
surements, one would like to be able to apply (3.213) to all the observed reciprocal vectors,
instead of only three, thus arriving at an averaged estimate of H.
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To accomplish this, note that the selection of the Gi in (3.209) is largely arbitrary, apart
from the requirement that the set Gi must be linearly independent (hence a basis). Any
other set of linearly independent vectors Gi must also give (3.209). Therefore, we have the
relation

g(i) = H−TG(i) (3.214)

holding for any indexed pair g(i),G(i). The superscript (i) is used to denote the enumeration
into the array of observable reflections, as determined by a structure factor calculation,
§3.2.2.3. Then, we can use (3.214) as the modeling equation in a least squares algorithm to
determine the value of H such that residual equations of the form

r(Gi,gi,H) = gi −H−TGi (3.215)

are minimized for all indexed pairs gi,Gi. We describe least squares estimation analysis
based on equations like (3.215) in greater detail in §3.4.

In summary, the overall strategy in our approach is to:

1. Assign a reference configuration κ where one generates G(i), i = 1, 2, ...,∞, where i
is an index into the particular reciprocal lattice node. The nodes of the reciprocal
lattice are one-to-one with an h, k, l index, see (3.65). The h,k,l indices which produce
diffraction are determined from the structure factor, (3.90). We have

G(i)(h, k, l) = hL1 + kL2 + lL3, (3.216)

where L1,L2,L3 are the reciprocal vectors based on the unit cell geometry. We will
return to this concept in the next section.

2. The crystal is indexed and the pairs are created, gi,Gi, i = 1, 2, ..., Nvis, where Nvis <
∞ is the the number of experimentally visible reciprocal lattice vectors, which will be
a function of the wavelength, λ, crystal structure gκ, and angular rotation range ∆ω
for the rotating crystal method, see §3.3.1.1.

3. The data gi,Gi are implemented into an optimization algorithm based on solving
equations based on (3.214). The result of the optimization problem are to obtain the
deformation H which best satisfies, (3.214): that is the H which best matches the
data.

It should be pointed out that the transformation H is the elastic deformation in the model
for elastic plastic deformation developed in Chapter 2. With an appropriately chosen con-
figuration κ, stresses are readily computed through constitutive equations using Hκ, see
Equation (3.160). This synergy makes X-ray diffraction attractive for the investigation of
the model in Chapter 2.

Some details of the strategy to lattice refinement prescribed here differs from the tradi-
tional methods in the crystallography literature. In these methods, one performs a similar
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optimization problem to refine the lattice, but the optimization occurs over the internal an-
gles and lengths of a unit cell, along with an orientation operation, instead of the components
of H. We can relate these two approaches by translating the unit cell parameters into the
present language - we now describe the details.

3.3.5.1 Construction of structural map.

For simple lattices we can clearly link the approaches of refinement between the mechanics
approach and the crystallographic approach, as shown in Figure 2.6.

To achieve this we first consider a reference cube aligned with a Cartesian basis e1, e2, e3.
For later use, the reciprocal vectors in this configuration are trivial due to orthonormality of
the Cartesian system; we have

e∗1 = e1, e
∗
2 = e2, e

∗
3 = e3, (3.217)

where e∗i , i = 1, 2, 3 are the reciprocal basis vectors to ei. Throughout this section, reciprocal
vectors will be distinguished by the notation (·)∗. This cube is mapped by a structural
map, Hs, which takes the unit cube into its conventionally prescribed lattice parameter
configuration. This configuration is defined by the three length changes of the cube axes,
a, b, c, and the internal angles of the cell, α, β, γ. We construct this deformation according
to the following definitions:

Hse1 ≡ a = ae1 (3.218)

Hse2 ≡ b = ber(γ; e1, e2) (3.219)

Hse3 ≡ c = cĉ(α, β, γ), (3.220)

where a,b, c are the unit cell edges after the structural map, and where we are using the
assignment of the polar coordinate unit vector er defined by

er(γ; e1, e2) = cos γe1 + sin γe2. (3.221)

The Cartesian representation for c, which is defined off of the internal angles α, β, γ, is
lengthy to compute; details are provided in the Appendix, see Equation (A.39). Also consult
Neustadt et al. (1968) for an alternative point of view on this computation.

Now returning to the consideration of Equations (3.218)-(3.220), recall that Equation (3.217)
defines the reciprocal basis Gi(≡ e∗i ) with respect to the reference cube configuration. Then
we can apply (3.207) to Equations (3.218)-(3.220), observe that a ≡ g1, b ≡ g2, and c ≡ g3,
and see that Hs has the representation

Hs = a⊗ e1 + b⊗ e2 + c⊗ e3

= ae1 ⊗ e1 + ber(α; e1, e2)⊗ e2 + cĉ(α, β, γ)⊗ e3. (3.222)
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As an example we display Equation (3.222) in matrix form for the general triclinic case.
Resolving on the Cartesian basis ei gives

Hs =

a b cos γ c cos β
0 b sin γ c(cosα− cos β cos γ)/ sin γ

0 0 c (1 + 2 cosα cos β cos γ − cos2 α− cos2 β − cos2 γ)
1/2
/ sin γ


ei⊗ej

,

(3.223)
where ei ⊗ ej denotes the tensorial basis being used. Details of the computations leading to
Equation (3.223) are provided in the Appendix, §A.3. Finally, the reciprocal basis in (3.216),
L1,L2,L3 are generated from the equations

Li = H−T
s e∗i , i = 1, 2, 3. (3.224)

So far we have only related unit cell parameters to the structural map of a convenient
artificial reference cube. To complete the lattice refinement problem we must be able to
account for the orientation of the physical configuration of the lattice when the X-ray ob-
servation is made. Therefore to go from the structural map configuration to an arbitrary
current configuration, an additional rotation operation, denoted by R̄ ∈ SO(3,R), is re-
quired. This rotation tensor may be parametrized by three coordinates, e.g. Euler angles
or angle axis parameters, see (A.5). Finally, the full set of parameters characterizing the
deformation from the reference cube to the current configuration are summarized by

Hcube(r1, r2, r3, a, b, c, α, β, γ) = R̄(r1, r2, r3)Hs(a, b, c, α, β, γ), (3.225)

where r1, r2, r3 are e.g. the angle axis parameters for a rotation. The lattice refinement
procedure then occurs on the array r1, r2, r3, a, b, c, α, β, γ; that is, these values are modified
to match experimental diffraction data via an algorithm such as least squares. The entire
process is depicted in Figure 3.19, where the actions of the structural map Hs and rotation
R̄ are illustrated, arriving at the final configuration where the diffraction measurement is
made.

An approach more in line with the mechanics view would be to fix the lattice parameters
from the structural map corresponding to a chosen reference state, (e.g. let Hs,0 define the
reference state!) and then simply evolve this structure with an unrestricted transformation
Hκ. Then the map from the fixed reference configuration to the current configuration is
parameterized by

Hκ(R,U) = RU, (3.226)

where R is parametrized by three coordinates, and U is parameterized by six coordinates
due to symmetry. See Figure 3.20 for a depiction of this situation.

Comparing Figure 3.20 and Figure 3.19 shows that in theory either approach works as
well as the other, since the final solutions for the deformation relative to the unit cube would
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Figure 3.19: Depiction of the lattice refinement procedure using six unit cell parameters
a, b, c, α, β, γ and three rotation parameters r1, r2, r3 to arrive at the physical configuration
of the crystal where diffraction is measured. The final state based on evolution from the
initial cube is given by the mapping Hcube = R̄Hs. The evolution of lattice vectors from the
reference cube to the physical configuration is shown by ei → Gi → gi



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 205

e
1

e
3

e
2

H
s,0 0 0 0 0 0 0

(   ,    , , )a   b   c a , b , g

g
1

g
2

g
3

G a  =    e
1 0 0 1

= a

G b e e   e
2 0 0 r 0 1 2
= = ( , )b g ;

a
0b

0

g
0

H (R,U)k

k (fixed)

G c c
3 0 0 0 0

= = ( )c a , b , g0

^

Figure 3.20: Depiction of the lattice refinement procedure using the lattice deformation H
from a fixed reference configuration κ. The reference lattice is generated from the structural
map at a convenient state, fixing a0, b0, c0, α0, β0, γ0. The reference parameters typically
define a stress free state (the material may be a powder) so that constitutive equations
defined with respect to κ are easily interpreted.
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be equivalent. We can relate both approaches with respect to the initial reference cube,
giving the equivalence

Hcube = HκHs,0 = RHs. (3.227)

However upon consideration of the structural map in (3.223), in the crystallographic ap-
proach modification of the unit cell parameters induce both stretch and rotation, (3.223).
In the mechanics approach, these kinematically meaningful quantities are decoupled, by the
direct use of the polar decomposition. Therefore these two techniques can have quantitative
difference when it comes to calculating uncertainties, a consideration which will be explored
in §3.4.2.1. Therefore the mechanics perspective of fixing κ with reference unit cell parame-
ters and refining Hκ based on the data is preferred in this study. See Edmiston et al. (2012)
for further details of these comparison.

A common approximation made in the literature on diffraction based stress analysis is
to use infinitesimal strain kinematics to account for lattice strain. In the next section we
investigate this approximation and compare it to the finite deformation result preferred here.

3.3.5.2 Error in small strain estimate.

We now consider typical expressions used for infinitesimal strain based analysis of diffraction
data in the literature. These equations differ in appearance from Equation (3.206). For
example, common methodologies for strain analysis take fundamental relation

ε ·N(i) ⊗N(i) =
δd(i)

d
(i)
0

, (3.228)

where ||ε|| << 1 is the infinitesimal strain tensor, N(i) is the normal vector to the ith lattice

plane, and δd(i) ≡ d
(i)
f −d

(i)
0 is the change in planar spacing for the ith reflection. Here d

(i)
f is

the deformed spacing, and d
(i)
0 is the initial spacing. Then a least squares algorithm is formed

from residuals based on Equation (3.228) in order to solve for ε. Most crystalline materials
yield before reaching the levels of distortion which would make infinitesimal strain measures
such as (3.228) unacceptably erroneous compared to a finite deformation measure such as
Hκ. However recent experiments are pushing this envelope. Large elastic strains are possible
for short time scale studies such as impact loading, where plastic flow is absent (Kalantar
et al., 2005; Hawreliak et al., 2011), or when high hydrostatic pressures are imposed, such as
those attained in diamond anvil cell experiments (Jayaraman, 1983; Yamanaka et al., 2001;
Katrusiak, 2008). Although to date the error in using infinitesimal kinematic measures
has been acceptable, since typically ‖ε‖ < 1 %, finite deformation measures may become
important to consider as experimental techniques enable large-strain studies.

Furthermore, upon critical examination of Equation (3.228), these kinematics are objec-
tionable from the outset. Traditional definitions of strain tensors do not operate on planar
normals, but on tangent vectors or line elements, and these have different behavior under
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the same transformation. For example, consider the Lagrangian strain tensor given by

E =
1

2

(
HTH− I

)
. (3.229)

Noting from Equation (3.213) that H operates on line elements, Equation (3.229) indicates
that E likewise operates on line elements. Instead, the appropriate kinematic relationship
for planar normals is obtained from Nanson’s formula (Chadwick, 1999)

(detH)H−TN(i) = µ(i)n(i),

where n(i) is the deformed unit normal, µ(i) =
(
C−1 ·N(i) ⊗N(i)

)1/2
is the area ratio, and

C ≡ HTH = U2.
We do not in the end seriously object to the use of Equation (3.228) for small strain

studies, which is the most common situation to date. We point out the deficiency should
experimental conditions advance to the point where using Equation (3.228) would give dis-
tinguishable errors, or for the large elastic strain cases noted in the introduction. In the next
section we will show that Equation (3.206) reassuringly reduces to Equation (3.228) upon
linear approximation. We find these computations useful to elucidate, since this equivalence
may not be evident upon first comparing (3.228) to (3.206).

Linear approximation procedure.

We now derive the error made when replacing the general kinematics given by Equation (3.206)
with the approximate kinematics in Equation (3.228). The linearization method shown here
gives is less rigorous than the general approach given by Hughes and Pister (1978), but gives
the same results. The result of the procedure is that the kinematics of Equation (3.228) are
correct to within an error of order ε2. For a rough idea of the meaning of this, let’s assume
we have strains of ε ≈ 1% = 0.01, with error ∆ε = ε2 ≈ 1 · 10−4. Then for a material with
elastic modulus E ≈ 100 GPa, the nominal stress level would be σ ≈ 1 GPa and the error
in the stress would be ∆σ ≈ 10 MPa. This error is currently below the magnitude of error
arising from other sources such as precision uncertainty (Edmiston et al., 2011); however
as instrumentation and data analysis algorithms improve this may not always be the case.
From another perspective, at the higher stress levels which may be obtained in diamond
anvil cell or shock experiments, where σ ≈ 10 GPa this error may also be detectable.

We begin by considering with the relative change in spacing for a given lattice plane, e.g.
the right hand side of Equation (3.228),

δd

d0
=
d− d0
d0

. (3.230)

In Equation (3.230) and all the following equations, the superscript (i) designating the lattice
plane will be suppressed to clean the notation. Next we employ the finite deformation
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kinematics of Equation (3.206) to linearize Equation (3.230) about the reference state. We
have the typical requirements of R = I, and use a simple expansion for the stretch,

U = I+ ε. (3.231)

In practice we obtainR = I effectively by rotating the reference configuration κ. To compute
δd/d0 from Equation (3.230) we expand the planar spacing in the deformed configuration,
d, giving

d = d0 +
∂d

∂ε

∣∣∣∣
ε=0

· ε+O(ε2). (3.232)

Using Equation (3.232) in Equation (3.230) gives the leading order expansion for the relative
change in spacing as

δd

d0
= d−1

0

∂d

∂ε

∣∣∣∣
ε=0

· ε+O(ε2). (3.233)

Next, it can be shown that lattice planar spacing, d, is related to the magnitude of a reciprocal
lattice vector g∗ by the equation

(d) = ‖g∗|‖−1. (3.234)

Substitution of Equation (3.206) in Equation (3.234) gives

d = |g∗|−1

=
(
H−TG∗ ·H−TG∗)−1/2

=
(
C−1 ·G∗ ⊗G∗)−1/2

. (3.235)

For later use, we note that in the reference state, similar computations give d0 = |G∗|−1.
Then using Equation (3.235) with the chain rule we compute

∂d

∂εkl
= −

(
1

2

)
1(

C−1 ·G∗ ⊗G∗)3/2
(
∂(C−1)mnG

∗
mG

∗
n

∂εkl

)
, (3.236)

where G∗
m ≡ G∗ · em, is notation for projection on the Cartesian basis. Similarly (C−1)mn =

C−1 ·em⊗en. Next, we use C = U2, the initial expansion for the stretch in Equation (3.231),
and the result (I+ ε)−1 = I− ε+O(ε2) (Liu, 2002, p. 261), giving

C−1 = I− 2ε+O(ε2). (3.237)

Then substitution of Equation (3.237) in Equation (3.236) and evaluating at ε = 0 so that
C ≈ I gives

∂d

∂εkl

∣∣∣∣
ε=0

=
1

(|G∗|)3
G∗

kG
∗
l . (3.238)
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Now we write G∗ = |G∗|Ĝ∗ where Ĝ∗ is the unit vector associated with G∗. The

properties of reciprocal space geometry are such that Ĝ∗ = N, where N is the unit normal to
the lattice plane. Using this property, Equation (3.238) and d0 = |G∗|−1 in Equation (3.233)
gives, after simplifications,

δd

d0
= ε ·N ⊗N +O(ε2). (3.239)

Thus we have shown that the finite deformation expression of Equation (3.206) reduces
to the conventional expression of Equation (3.228) upon a linearization procedure. The
infinitesimal relation in Equation (3.228) is therefore demonstrated to be correct to within
an error of O(ε2). The detailed form of the error term is a complicated function and is
too lengthy to report here. Should there be desire to compute these higher order terms by
continuing the expansion, we suggest simply using the finite deformation framework from
the beginning.

3.3.5.3 Summary

In this section, we have derived the relations between the descriptions of lattice distortion
based on unit cell parameters and that based on a lattice deformation tensor relative to
a fixed reference configuration, κ. This was done to establish the equivalences of the two
approaches in order to assist in communications and collaborations between mechanics and
crystallography communities. We pointed out that the lattice deformation tensor approach
should be preferred for studies where constitutive quantities such as stress tensors are even-
tually required. This is because the constitutive formula for phenomenological continuum
theories are explicitly expressed in terms of tensor functions of H; in addition in this frame-
work the uncertainties for lattice stretch and rotation are naturally decoupled (Edmiston
et al., 2011).

We have also derived the evolution relation for reciprocal lattice vectors under finite
lattice deformations, H. This result enabled the demonstration that the finite deformation
relations of Equation (3.206) reduce to the more commonly used infinitesimal kinematic
relations of (3.228) upon linearization about the reference state. The error term in us-
ing the infinitesimal kinematic relations was shown to be O(ε2). Recognition of this error
when using small strain kinematics is becoming more important to consider as experimen-
tal precisions improve and as higher lattice strain levels are probed. The implementation
of Equation (3.206) into analysis codes is a suggested course of action to avoid this error,
should there be sufficient need.

3.3.6 Conclusion

In this section we have developed the core ingredients to analyze X-ray diffraction patterns.
We have described aspects of each step in the data reduction procedure which takes the
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detector images from polycrystalline materials, shown in Figure 3.14, in order to produce
estimates for the lattice deformation H. We have described how the geometry of the ex-
perimental setup is used in converting the pixel location of a peak on the detector image
to a reciprocal lattice vector, including grains offset from the rotation axis and tilt of the
detector panel. We gave background information on the indexing of diffraction patterns, and
described an indexing algorithm which may be of use in certain applications. Finally, we de-
scribed the method of lattice refinement based on linear transformations from a meaningfully
chosen reference lattice, κ. This transformation was denoted H, which can be interpreted
as the elastic strain in the model for elastic-plastic deformation developed in Chapter 2.
We related this approach to the refinement problem with the traditional crystallographic
approach of refining on unit cell parameters, and showed our equations to be equivalent to
infinitesimal strain equations after a linearization procedure.

In several places in this section we mentioned the use of least squares methods in to
estimate quantities such as the transformation H. In the next section we describe the
background and implementation of these methods, including uncertainty quantification. We
also suggest two methods for the estimation of H from diffraction data which offer increased
capabilities over conventional methods.

3.4 Kinematic parameter estimation

This section describes details of the incorporation of X-ray diffraction data in algorithms
to make estimates on quantities such as the lattice deformation H in §3.3.5. In §3.5 the
kinematic estimates obtained from the methods in this section are used with constitutive
models to extract material parameters.

The most common method of parameter estimation are least squares methods (Bard,
1974). Both this section and §3.5 use least squares methods extensively. In overview these
methods are described by defining a model, using the model to predict experimentally ob-
servable values as a result of given input data, and carrying out an algorithm to change model
parameters to minimize the difference between these predicted and experimentally measured
values. With an appropriate formulation, the least squares method also gives uncertainties
on the best-fit model parameters. In the next section we describe the weighted least squares
method in some generality; we then apply the method to X-ray diffraction data in various
applications in this section and in §3.5. The style of presentation and terminology for this
background section closely follows that of Bard (1974).

3.4.1 Background - weighted least squares

We briefly summarize several basic results from the method of weighted least squares, and
refer to Bard (1974) for further details. The basic entity of the theory given in Bard (1974)
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are the structural equations for the model,

r(z1, z2,Θ) = 0, (3.240)

where the m dimensional array z1 represents independent variables, the n dimensional array
z2 are dependent variables, and the l dimensional array Θ are the model parameters. Here
both z1 and z2 are considered experimentally measured or derived quantities. Equality in
(3.240) only holds if both the model r(·,Θ) and the data (z1, z2) are exact and free of errors.
When the model is in error or the data has scatter, the model may be written as

r(z1, z2,Θ) = eµ(z1, z2,Θ), (3.241)

where eµ(z1, z2,Θ) is called the residual for the µth experiment. For convenience we will
suppress denoting the z1, z2 dependence of eµ(z1, z2,Θ), and simply write the residual as
eµ(Θ). In many cases the structural equation, (3.240), can be rewritten in reduced form as

r(z1, z2,Θ) = z2 − f(z1,Θ). (3.242)

Therefore for the reduced equations (3.242), the residual eµ(Θ) is interpreted simply as the
difference between measured and predicted data for the µth experiment. As an example,
recall Equation (3.215), which is written in the form of (3.240) and (3.242).

The method of least squares can be stated as finding the minimum of an objective function
Φ(Θ), where the general objective function is of the form (Bard, 1974)

Φ(Θ) =
M∑
a=1

M∑
b=1

N∑
µ=1

N∑
η=1

B(µa)(ηb)eµa(Θ)eηb(Θ), (3.243)

where B(µa)(ηb) are the weight coefficients, and eµa(Θ) are multidimensional residual func-
tions. The indices µ, η indicate the experiment index, and the indices a, b indicate indexes
into the residuals from the µth, ηth experiment, respectively. For example, in (3.243) we have
indicated that N experiments were made, each resulting in anM -dimensional residual array.

The optimal model parameters are estimated by solving the equation

∂Φ

∂Θ

∣∣∣∣
Θ∗

= 0, (3.244)

where Θ∗ denotes the solution parameters. This solution is obtained by, e.g. Newton itera-
tions, or any other optimization technique. The covariance matrix of the solution parameters
Θ∗ can be estimated by computing the inverse of the Hessian of Φ (Bard, 1974),

VΘ∗ ≈
(
∂2Φ

∂Θ2

)−1 ∣∣∣∣
Θ∗
. (3.245)
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Figure 3.21: Schematic of the ellipsoidal confidence region described by (3.246) for dimΘ = 2.
The maximum projections of the ellipse on the Θ-coordinate axes are one method, among
many, to report the uncertainty in Θ∗.

The covariance matrix is important if uncertainties in the solution parameters Θ∗ are of
interest, which for constitutive determination is certainly the case (Zohdi, 2001). The co-
variance matrix VΘ∗ defines a confidence region in Θ-space around the optimal solution Θ∗

which is described by the ellipsoid (Bard, 1974)

(Θ−Θ∗)TV−1
Θ (Θ−Θ∗) ≤ χ2

α,l, (3.246)

where χ2
α,l is the upper point of a chi squared distribution with l degrees of freedom, and α

is the chosen confidence level.
Figure 3.21 depicts a schematic confidence region described by (3.246) for l = 2. When

VΘ∗ is such that the principal axes are not coaxial with the Θ coordinate axes, as depicted
in Figure 3.21, there is some discretion in how to quantify the confidence interval for a
particular component of Θ∗. In the present work, as an estimate, we find the bounds of
VΘ∗ in the directions of the eigenvectors of VΘ∗ , and project these extents onto each Θ
coordinate axis. The maximum distance achieved by this procedure for each Θ-coordinate
is then assigned as the uncertainty interval for that particular parameter. With this, the
solution parameter is stated as Θ∗

i = Θ∗
i ±uΘ∗

i
, where uΘ∗

i
is the uncertainty in the solution

value.
The background presented in this section is general for any consideration of fine tun-

ing model parameters. For the present application, we are mostly interested in obtaining
estimates of the lattice deformation H. We also are interested in estimates of the grain pre-
cession, x, see §3.3.3. We therefore form residuals of the form (3.242) by comparing predicted
and measured diffraction vectors, such as Equation (3.215). In the next section we describe
the forms of the model functions used for least squares algorithms in this study. These model
functions differ from conventionally employed methods, and provide information beyond that
obtained by standard analysis.
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3.4.2 Model equations and objective functions

In this section we describe the detailed model functions (3.240) which will be used during the
course of analysis of experimental X-ray diffraction data. We will describe two models for
estimating the lattice state, a grain averaged approach and a forward modeling approach.
The motivations for these two approaches differ from one another. The grain averaged
approach is targeted at efficient uncertainty analysis, and the goal of the forward modeling
approach is to extract data of intragranular inhomogeneity from single crystals. Both are
novel formulations to the field for this class of X-ray diffraction experiments.

The grain averaged approach is summarized by the following description: we determine
the location of diffraction peaks, and minimize the difference between predicted and mea-
sured locations by using the kinematic relation (3.206). The location of the peak could be
characterized by the reciprocal vector components or the angular location §3.3.2. In either
case, the process of assigning a ‘location’ to a diffraction peak requires some further expla-
nation. To this end, consider Figure 3.22, which shows a diffraction peak for a perfect ruby
single crystal. Even with the simple, uniform shape of the local intensity distribution, there
is clearly some leeway in ascribing the pixel location of the diffraction peak. In Figure 3.23
we show a diffraction peak which has smeared out due to plastic deformation in the crystal.
There is uncertainty in the location of the diffraction peak in both cases, but more so with
plastic deformation. The goal of this modeling approach is to convey this uncertainty in the
diffraction peak location to the uncertainty in the overall lattice deformation H. All else
being equal, the data in Figure 3.23 should result in increased uncertainty in H over that in
Figure 3.22.

To accomplish this in the grain averaged approach we fit a local intensity distribution to
each diffraction peak. In powder diffraction experiments, where integrated intensity is only a
1−D function, I(2θ), as opposed to the 3D function here I(2θ, η, ω), much attention is paid
to the precise functional form of I(2θ). For example, there is much hand wringing over what
functional form this local intensity distribution should take, either Gaussian or Voigt (Will,
2006). In the high energy experiments we are considering, we do not have the reciprocal space
resolution required to distinguish these forms however, so any function with a maximum and
some breadth works. For example, for an undistorted crystal, there may only be only on the
order of 10 pixels to describe the diffraction peak, making quantitative distinction between
local intensity shapes produced by Gaussian or Voigt functions impossible on a rigorous
basis. No matter what form is chosen, we fit a local intensity function to the data.

Although crude, this method of fitting local intensity distributions to each peak is novel
compared to traditionally used forms of X-ray diffraction analysis. Normally, the pixel
location of the diffraction peak is assigned based on the intensity weighted average. The
grain averaged approach has appeal in that uncertainty in the local fit of the diffraction
peak propagates to uncertainty in the location of the diffraction peak, information which
can be used as weights in the overall lattice refinement, (3.243) and (3.245).

The forward modeling approach we present takes a slightly different point of view but



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 214

the motivation is the same: analyze the data in such a way to extract more information
than is possible with the intensity weighted average. In the grain averaged approach, by
allowing each diffraction peak to have its own model parameters according to a local inten-
sity distribution, we are not taking advantage of the physical fact that the diffraction peaks
under consideration are originating from the same crystal. For example in Figure 3.23, where
plastic deformation has occurred, spatial gradients in the intragranular lattice deformation
are the primary cause of the angular spread of the diffraction peak. This information may
be important to capture for a variety of studies relating to the development of intragran-
ular texture, which has not been quantitatively explored to a great degree for these type
of diffraction experiments. Therefore instead of fitting independent parameters to each in-
dividual peak, we assign parameters according to certain structural properties of the grain
itself, for example, parameters corresponding to an intragranular orientation distribution.
We use the microstructural information to make predictions of the pixel by pixel diffracted
intensity, and compare experimental and prediction in a residual on a pixel by pixel basis.

Besides a certain aesthetic/holistic appeal, this approach has several benefits: First, it
introduces a larger set of data to minimize over in the least squares algorithm, and hence
increases the precision of the lattice deformation estimates over the grain averaged approach.
Second, the microstructural information obtained can be used as a trailing indicator of plastic
deformation, as we will see upon application to data. Of course, this approach has relative
shortcomings as well. The forward modeling approach is computationally expensive, so
with current technology it should not be used as the de facto grain refinement algorithm.
However, in these sort of applications, obtaining best fit parameters for experimental data,
it makes sense to use a sequence of models of increasing sophistication in order to obtain
the final parameter values. For one reason this is because good initial conditions are crucial
in determining the success of an optimization algorithms for nonlinear problems. We have
already seen an example of this increasing sophistication in §3.3.1.1 with respect to lattice
refinement to determine H. Grain indexing is the coarse level estimate for R ≈ H, followed
by the procedure discussed here, the final refinement for H ∈ GL(3,R). For example, we
may first perform a fit based on the intensity weighted peak locations, followed by the local
intensity distribution, and finally the forward model.

In summary, both methods of extracting data from X-ray diffraction experiments dis-
cussed in this section have unique attributes , with different costs and benefits to weigh, but
they are also compatible with one another. In the following sections, for each least squares
model required we will describe: (1) the data involved z1, z2, (2) the functional form of
the residual (3.242), and (3) the unknown parameters Θ, which the least squares algorithm
seeks to determine. We also examine aspects of uncertainty estimates based on (3.246). For
example (3.246) is dependent upon the form for the objective function Φ, so the uncertainty
predictions from several model equations may be compared. We begin by addressing the
grain averaged approach to lattice refinement, followed by the forward modeling approach.
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Figure 3.22: Diffraction image taken from area detector (see Figure 3.13), with 2θ = const
rings drawn on the detector (a). A diffraction peak is highlighted at (b). The uncertainty
in the location of the diffraction peaks leads to uncertainty in the lattice deformation.

3.4.2.1 Grain averaged approach

In this section we describe the grain averaged approach to estimating model parameters,
H. As a brief review: recall that the main output we are seeking from the diffraction
data is the lattice deformation, H. Additionally, the geometric analysis in §3.3.3 allows the
grain center of mass position x to be determined. Therefore in the language of (3.240),
the model parameters accessible in this model are Θ = (H,x), both quantities on a grain
averaged basis. As mentioned previously, the grain averaged approach fits a local intensity
distribution to a diffraction peak. Uncertainty in the location of the center of the distribution
is then communicated to the lattice refinement step by using weighted least squares. This
enables a systematic determination of the precision uncertainty associated with high energy
X-ray diffraction experiments. We now describe the details.

3.4.2.1.1 Diffraction peak model. In this section we introduce the diffraction peak
model used to fit local intensity distributions recorded in the detector image stack, introduced
in §3.3.1.1. An example of a local intensity distribution is shown in Figure 3.22, Figure 3.23.
In a polycrystal it is certainly possible for diffraction peaks from different individual grains to
overlap at the same location on the detector. This complicates the analysis, and is a limiting
factor in our framework, as it is with any conventional approach of diffraction analysis. In
this discussion of local intensity distributions we consider peak overlap to be previously
accounted for. For example, by carefully selecting a threshold level which enables separation
of nearby peaks.
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Figure 3.23: A diffraction image from a titanium alloy experiment, with 2θ = const rings
drawn on the detector (a). A diffraction peak is highlighted at (b). The peak is elongated
along the η direction of the detector plane due to plastic deformation suffered during tensile
deformation.

In standard methods, the location of the diffraction peak is obtained from computing
the intensity weighted average of the location in angular or pixel coordinates. That is, in
practical terms,

x =
1

Ē

N∑
i=1

Eixi, (3.247)

where x is the intensity weighted estimate of the location of the peak Ei is the intensity of
the ith pixel, Ē =

∑
iEi is the total integrated intensity and xi is the location of the ith

pixel. In contrast to this approach, in our method we assume an anisotropic functional form
for the local integrated intensity: a three dimensional Gaussian along the angular directions,
e.g. E(2θ, η, ω). This formulation is supported by observations that diffraction peaks tend
to be spread out along the η, ω coordinate directions. The choice of a Gaussian is primarily
due to their long history of usage in X-ray diffraction; at the pixel resolution we use the
precise functional form does not matter. We use

E(θ, η, ω) = E0 exp

[
−

((
2θ − 2̄θ

s2θ

)2

+

(
η − η̄

sη

)2

+

(
ω − ω̄

sω

)2
)]

+ C, (3.248)

where 2̄θ, η̄, ω̄ are the centers of the intensity distribution in angular coordinates, s2θ, sη, sω
are the angular widths, E0 represents the intensity scaling of the peak and C represents
the background radiation. In relation to the discussion in §3.4.1, E(·) is an example of
the function f(·) given in Equation (3.242). Inspection of Equation (3.248) reveals that the
model parameters for the diffraction peak function are the array

Θpeak = (2̄θ, η̄, ω̄, s2θ, sη, sω, E0, C), (3.249)
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and the independent variables (z1 in (3.241)) are the coordinates θ, η, ω.
We now incorporate (3.248) in a weighted least squares objective function of the form

(3.243) to solve for Θ∗
peak. The residual for the diffraction peak objective function is formed

on the measured integrated pixel intensity, written as

eτ (Θpeak) = Emeas,τ −
∫
Ωτ

E(θ, η, ω;Θpeak)dΩτ , (3.250)

where Emeas,τ is the measured integrated intensity for the τ th pixel, E(θ, η, ω;Θpeak) is given
by the Gaussian distribution (3.248), with model parameters Θpeak, (3.249), and Ωτ denotes
the 2θ, η, ω domain of the τ th pixel. The integral in (3.250) is performed by standard nu-
merical quadrature methods, with the number of quadrature points in each direction chosen
to accurately capture the variation of the intensity over the pixel.

The weights, B(τa)(νb), are found using information about the distribution of Emeas esti-
mated from repeated measurements. We denote the standard deviation of the intensity read
by a pixel normalized to intensity as σE, so that the weights in (3.243) are given by

B(τ)(ν) =
1

σ2
E

, τ = ν B(τ)(ν) ≡ 0, τ 6= ν. (3.251)

In (3.251)1 we have assumed that all pixels have the same variation in response to incident
X-rays; assuming that the cross correlation between pixels is zero gives (3.251)2. To quantify
this, based on analyzing repeated scans of diffraction peaks at varying intensities we used a
conservative estimate for σE to be given by σE = 0.2Emeas. Using Equation (3.250), (3.251)
in (3.243) gives the weighted least squares objective function

Φpeak(Θpeak) =

Npixels∑
τ=1

Emeas,τ −
∫

Ωτ

E(2θ, η, ω;Θpeak)dΩτ

σE


2

, (3.252)

where τ denotes the pixel index, and where Npixels is the number of pixels assigned to the
diffraction peak. Upon execution of the least squares algorithm to findΘ∗

peak uncertainties for
the model parameters at the solution are found from (3.246). In particular, the uncertainties
of the parameters representing the center of the peak, (2̄θ, η̄, ω̄) will be of importance in
subsequent discussion in this section, and are denoted (σ2θ, ση, σω). In the next section we
implement the lattice deformation model equations into a weighted least squares framework.

3.4.2.1.2 Weighted lattice deformation model. In this section we briefly review
the model used to estimate lattice deformation parameters given diffraction peak locations.
We review the kinematics relating to the evolution of reciprocal vectors under finite lattice
deformations. We then incorporate these relations into objective functions for use in the
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weighted least squares method. We will propose several different objective functions in this
section, examining the properties of each as they pertain to our uncertainty analysis in
§3.4.2.1.3.

We have established the kinematic relations required to determine the lattice deformation
in Chapter 2 and §3.3.5. To reiterate, we wish to describe the deformed state of the lattice in
terms of the lattice deformation H with respect to a reference lattice configuration κ. The
configuration κ is obtained from §3.3.5.1 and (3.223), with a, b, c, α, β, γ set from literature
values, which have most likely been obtained at a stress free state (e.g. powder pattern).
The lattice in κ can equivalently be described by specifying a set of reciprocal vectors G(i)

for some labels (i). In the physical, or deformed configuration, the reference reciprocal vector
G(i) evolves due to deformation and becomes denoted as g(i). The kinematic relation between

the pair
(
g(i),G(i)

)
is given by

g(i) = H−TG(i), (3.253)

where H−T denotes the inverse transpose of H. We refer to Chadwick (1999); Holzapfel
(2000); Liu (2002) as modern references for finite deformation kinematics.

The relation (3.253) is used as the foundation for forming residual equations describing
the state of the lattice, which are then incorporated into a weighted least squares objective
function. The model parameters here are evidently the components of the deformation
gradient,

(Θlattice)ij ≡ (H)ij, i, j = 1, 2, 3, (3.254)

although parameters equivalent to a deformation gradient may also be used. For example,
from the polar decomposition theorem, we have H = RU, where R is a unique orthogonal
tensor representing the rotation factor of H and U is a unique positive definite symmetric
tensor representing the stretching factor of H7. Using this gives the model parameters as

Θlattice ≡ (r1, r2, r3, U11, U22, U33, U12, U23, U31), (3.255)

where rβ, β = 1, 2, 3 are coordinates which produce a rotation tensor such as angle axis pa-
rameters (Frank, 1992), and Uij = Uji are the components of U. Distinguishing rotation and
stretch parameters in this fashion will be useful in interpreting the results of our uncertainty
analysis.

7We note here that the grain indexing step briefly referred to in §3.3.1.1 essentially prescribes the rotation

factor R of H = RU. This is necessary to be able to form the pairs
{(

g(i),G(i)
)}

, which are then used

as data to implement (3.253) in a least squares algorithm (described later in this section). Due to crystal
symmetry however, one may arrive at differentR for the same grain if one used a different indexing algorithm,

hence changing the pairings
{(

g(i),G(i)
)}

, and subsequently both U and H. Equivalently, reassigning R to

the same grain amounts to assigning different reference configurations for the material. Since the uncertainty
analysis here is essentially related to local behavior (i.e. curvature) of an objective function Φ(Θ), see §3.4.2,
this issue does not present any complications for us.
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As with the diffraction peak model, we now incorporate (3.253) in a weighted least
squares objective function to enable the estimation of the parameters of Equation (3.255).
The required data for the residuals based on (3.253) are the reciprocal vector pairings{(

g(i),G(i)
)}

, which are able to be formed after the diffraction data is indexed, see §3.3.4
for more on grain indexing.

Next we propose several specific residuals based on (3.253). In all residuals µ denotes
the index associated with the µth diffraction peak. The first residual, e1µa, is given by

{e1µa} =


e1µ1 = 2̄θ

(µ)
meas − γ1(H

−T
κ G(µ))

e1µ2 = η̄
(µ)
meas − γ2(H

−T
κ G(µ))

e1µ3 = ω̄
(µ)
meas − γ3(H

−T
κ G(µ))

 , (3.256)

where the invertible functions γ : R3 7→ R3 denote mapping the predicted reciprocal vector
H−T

κ G(µ) into angular coordinates, that is,

γ(H−T
κ G(µ)) = (2θ(µ), η(µ), ω(µ)),

with the associated residual (3.256) being based on the difference between predicted and
measured angular coordinates of the peak. Note that γ is not one-to-one (there are usually
two angular solutions for a single reciprocal vector) and so the formation of the residuals with
(3.256) needs to be implemented with caution. Even so, employing (3.256) has advantages
which will be made evident in §3.4.2.1.3. A second proposed residual, e2µa, is given by

e2µa =
[
g(µ)

]
a
−
[
H−T

κ G(µ)
]
a
, (3.257)

where the notation [v]a, simply denotes the ath component of v resolved on an appropriate
basis. For example the values of [v]a could be the Cartesian component decomposition,
[v]a = v · ea, a = 1, 2, 3. In our implementation we found using [ ]a to denote a spherical
polar coordinate decomposition with inclination angle measured from the zenith e2 and
azimuthal angle measured from e1 to be useful. We we elucidate upon this in §3.4.2.1.3.
The final residual we report on, e3µa, is obtained by simply forming the inner product of the
kinematic relation (3.253),

e3µ1 = (g(µ) −H−T
κ G(µ)) · (g(µ) −H−T

κ G(µ)), (3.258)

resulting in a scalar valued residual.
In all residual equations (3.256)-(3.258), the input data are the centers of the spot in

angular space, the 2̄θ, η̄, ω̄ parameters from the solution vector Θ∗
peak, see (3.249). The

weights for the residuals (3.256)-(3.258) are assigned using standard error propagation for-
mula (Beckwith et al., 1995), for example,

σh =

√∑Nargs

i=1

(
∂h

∂xi
σxi

)2

, (3.259)
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where the function h = h({xi}) is a function of the arguments {xi}, i = 1, 2, ...Nargs, which
have uncertainties σxi . Using (3.259) the weights for the residuals eµa in (3.256)-(3.258) are
determined by

σeµa =

√(
∂eµa
∂2θ

σ2θ

)2

+

(
∂eµa
∂η

ση

)2

+

(
∂eµa
∂ω

σω

)2

, (3.260)

where σ2θ, ση, σω are found from the uncertainties of the peak location by using the analysis
discussed at the end of §3.4.2.1.1. That is, by applying (3.246) to the objective function for
the peak, (3.252). In using (3.260) we have omitted considerations of other possible sources
of error entering into eµa, such as uncertainty in the detector calibration parameters, see
(3.176). These factors can be incorporated as needed.

Next we put together (3.256),(3.257),(3.258) and (3.260) into three objective functions
represented by

Φβ
lattice(Θlattice) =

Npeaks∑
µ=1

(
eβµa(Θlattice)

σeβµa

)2

, (3.261)

where β = 1, 2, 3, eβµa are given by (3.256),(3.257),(3.258) respectively, and σeβµa is given by

computing (3.260). As before, upon execution of the least squares algorithm to find Θ∗
lattice,

uncertainties for the model parameters are found from (3.246). These uncertainties will be
denoted as (ur1 , ur2 , ur3 , uU11 , uU22 , uU33 , uU12 , uU23 , uU31). The properties of the three objective
functions (3.261) will be examined in §3.4.2.1.3.2, where we present results from applying
our methods to experimental data taken from a ruby single crystal as an ideal case. We also
give results of the application to an elastically and plastically deformed titanium polycrystal
as an example.

3.4.2.1.3 Experimental application In this section we apply our grain averaged anal-
ysis framework to data obtained from two different experiments. First, we analyze an un-
strained ruby single crystal, in order to take repeated measurements of a calibration material.
This data consists of sharp diffraction peaks, hence the requirement of observing data across
multiple pixels and omega frames for the local peak intensities is not satisfied for many
peaks. However we still use this data to compare our error predictions with those based
upon repeated measurements. We also use this data to suggest a preferred objective func-
tion for fitting the lattice deformation (3.261) and to examine the effect of the total angular
range, ∆ω ≡ ωf − ω0 on the single scan uncertainty prediction. We comment on the special
accommodations required to analyze the ruby data set in further detail in the next section.

Secondly, we apply our method to a polycrystalline sample of a titanium alloy, β21s,
under tensile load and after plastic deformation. This data was chosen to present since it is
representative of the intended application for our method, as the diffraction peaks are spread
over a relatively large angular range. We analyze a grain in the diffraction volume which
was manually centered on the rotation axis and report on the uncertainties of the averaged
stretch and orientation for this grain.
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3.4.2.1.3.1 Ruby single crystal In this section we apply our established uncertainty
framework to diffraction data taken from a ruby single crystal. We wish to find the estimated
uncertainty of Θ∗

lattice = H∗ = (R∗,U∗), based on the prescription for uncertainty developed
in the previous sections. We then compare the uncertainty obtained using our method from
a single scan with that attained directly from the statistical distribution of repeated scans.

We first make several comments on the ruby data analysis, since aspects of our analysis
differ slightly from that described in §3.4.2.1.1 owing to the low defect content of this crystal.
For the ruby, many diffraction peaks are present on only a single ω-frame, hence the Gaussian
intensity distribution used in our algorithm (3.248) is altered to become two dimensional,
i.e.,

E(θ, η) = E0 exp

[
−

((
2θ − 2̄θ

s2θ

)2

+

(
η − η̄

sη

)2
)]

+ C. (3.262)

The values for 2̄θ, η̄ and the uncertainties on these are then obtained with with the same
methods as described in §3.4.2. For the location of the ω coordinate, we assign ω̄ as halfway
between the ω slices which bracket the location of the peak, and assign the uncertainty in
ω as σω = ±1

2
δω. We then proceed with the refinement as described in §3.4.2.1.2. This is

unconventional compared to other methods, which either omit the ω coordinate from the
residual computation altogether, or form a residual based on the ω value obtained from the
lattice deformation parameters of the previous iteration. The reason for our approach is
that our uncertainty computation depends on the local curvature of the objective function,
(3.245). Conventional methods for refinement cause the objective function to be locally flat
at the solution Θ∗ with respect to deformations which change the omega coordinates of
the peak. Hence, we could not use predictions of uncertainty based on the confidence region
(3.246) when omitting the ω coordinate from the objective function. An alternate, dedicated
framework of analysis would have to be used to rigorously handle the case of single ω frame
peaks, for which previous work has been done, e.g see Winkler et al. (1979). Typically
uncertainties on the ω coordinate of a peak are about a factor of 10 greater than the η
coordinate uncertainty, and about a factor of 100 greater than the θ coordinate uncertainty.
The implication being that we are effectively using the ω coordinate less than η, θ in refining
the lattice deformation parameters. In a general sense this accomplishes the same end as
conventional approaches.

Additionally, after a solution for Θ∗
lattice is obtained, we evaluate the residual vector based

on (3.261), Φβ
vec, where

Φβ
vec ≡

eβ1a(Θlattice)

σeβ1a
,
eβ2a(Θlattice)

σeβ2a
, ...,

eβNpeaksa
(Θlattice)

σeβNpeaksa

 .

We compute mean and standard deviation for Φβ
vec, and then remove peaks which lie outside

a specified number, Nσ, of standard deviations from the mean value of Φβ
vec. We then find
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the solution for Θ∗
lattice based on this reduced data set. We repeat this procedure until no

further peaks are removed. This procedure is consistent with recommendations on outlier
removal in Bard (1974), who suggests a range for Nσ of 2.5 − 3. This procedure is also
seemingly used, along with other proposed criteria for outlier removal in Oddershede et al.
(2010). We typically used Nσ = 3 for our tests.

Diffraction measurements were taken at Argonne National Lab, Sector 1-ID. The exper-
imental setup used is shown schematically in Figure 3.13. For these tests we used a 150 µm
ruby sphere, NIST SRM 1990. The beam size was a wide box beam, 500 µm by 200 µm. The
beam energy was 80.72 keV, for a wavelength, λ, of 0.153 Å. The detector was a GE 41RT,
with 2048 x 2048 pixels, and 200 µm pixel size, positioned 1100 mm from the sample. The
ruby was centered on the rotation axis and then scans were taken for ω ∈ [−60◦, 60◦], with an
angular rotation increment of δω = 0.25◦. The total number of frames in the detector image
stack was ∆ω/δω = 120/0.25 = 480. We repeated the scans 9 times in order to directly
estimate the sampling distribution of Θ∗

lattice. This number of scans was chosen arbitrarily
based on beam time limitations.

3.4.2.1.3.2 Results. In this section we present our results from the ruby exper-
iments. In order to compute a deformation gradient, H, (3.159) the reference configura-
tion κ for the ruby was assigned using hexagonal unit cell based lattice parameters, giving
a = 4.761 Å, c = 12.996 Å, see Wong-Ng et al. (2001).

Precision of R,U. The precision we attain from the rotation factor fit ranged over 0.01◦−
0.02◦ for the repeated measurements. The precision we attain from the strain fit ranged from
approximately 30 − 130µε, where µε ≡ 10−6 strain. To relate uncertainty in the stretch U
to uncertainty in strain we have used (3.259) with

E =
1

2
(U2 − I), (3.263)

where E is the Lagrange lattice strain measure, and I is the identity. To obtain the stated
value of uncertainty in the rotation factor fit, we computed the misorientation between the
solution R∗ ≡ R̂(r∗) and the rotation tensor at the furthest distance from the solution, R′,
where R̂ : R3 7→ SO(3,R) denotes the map from angle axis coordinates to rotation matrices,
and r∗ ≡ (r1, r2, r3)

∗ is the projection of the solution Θ∗
lattice into angle axis rotation space.

Here R′ is obtained by using the uncertainty in the angle axis parameters, e.g. R′ = R̂(r∗+
ur), where ur ≡ (ur1 , ur2 , ur3), i.e., it is the array formed by the uncertainties in the angle axis
parameters. We compare the estimated uncertainty at 95% confidence from a single scan, i.e.
using (3.261) with (3.246), to the uncertainty obtained from standard statistical analysis of
repeated scans in Tables 3.1,3.2. The stated results are obtained from the objective function
Φ1

lattice, see (3.261). In Tables 3.1,3.2, the uncertainty based on repeated measurements is
referred to as the measured uncertainty, umeas, and the uncertainty based on our method will
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Table 3.1: Comparison of average estimated uncertainty to that directly obtained by repeated
measurements for rotation factor angle axis components. Uncertainties are computed based
on a 95% confidence interval, using Φ1

lattice.

ur1 ur2 ur3
uestimate 5.1 · 10−5 1.9 · 10−4 4.1 · 10−5

umeas 5.2 · 10−4 2.5 · 10−3 1.1 · 10−4

Table 3.2: Comparison of average estimated uncertainty to that directly obtained by re-
peated measurements for stretch components. Uncertainties are computed based on a 95%
confidence interval, using Φ1

lattice.

uU11 uU22 uU33 uU12 uU23 uU31

uestimate 1.2 · 10−4 6.6 · 10−5 5.2 · 10−5 5.6 · 10−5 3.3 · 10−5 5.4 · 10−5

umeas 9.6 · 10−5 3.3 · 10−5 6.8 · 10−5 9.7 · 10−5 5.2 · 10−5 6.8 · 10−5

be referred to as the estimated uncertainty, uestimate. Our results compare favorably, being
slightly underpredictive of the uncertainty on the rotation components by about a factor of
10, and being underpredictive of the stretch component uncertainty by factor of around 1.5.
(Bard, 1974) states that the covariance matrices used to estimate uncertainty from a single
test (3.245) should be considered correct to within an order of magnitude; our results are in
line with this.

Effect of ∆ω on precision. Next we consider the effect of the total ω range for the
scan, ∆ω, on the estimated uncertainty. In Figure 3.24 we plot the uncertainty in the
stretch component, U11 versus the total ω interval, ∆ω, for ∆ω = (10◦, 20◦, ..., 120◦). The
component U11 was chosen to be representative of the trends in uncertainty for all stretch
and rotation parameters. We see a nonlinear trend for the estimated uncertainty in U11,
with uncertainty decreasing as the ω range goes up, as might have been anticipated. One
could use data like this to inform the selection an appropriate ∆ω range if a target level of
precision is to be weighed against the time required for a scan.

Comparison of Φlattice. We next compare results from the three objective functions Φ1
lattice,

Φ2
lattice, Φ

3
lattice (3.261). To do this, we parametrize the uncertainties obtained from these

three objective functions in an experimentally meaningful way by modifying the input data
to simulate the effect of taking larger δω steps. That is, we hypothesize larger δω steps
result in larger uncertainties for the ω locations of the peaks and compare error predictions
resulting from each of the objective functions. Explicitly, we compare the uncertainty from
objective functions

Φβ
lattice(Θlattice, t) =

Npeaks∑
µ=1

(
eβµa(Θlattice)

σeβµa(t)

)2

, (3.264)
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Figure 3.24: Plot of estimated uncertainty for a representative deformation parameter, U11

vs total angular sweep range, ∆ω ≡ ωf − ω0, for the ruby single crystal experiment.

where β = 1, 2, 3, eβµa are given by (3.256),(3.257),(3.258) respectively, and σeβµa(t) is given

by computing (3.260):

σeµa(t) =

√(
∂eµa
∂2θ

σ2θ

)2

+

(
∂eµa
∂η

ση

)2

+

(
∂eµa
∂ω

σω(t)

)2

, (3.265)

where σω(t) = t.
In Figures 3.25 and 3.26 we see the compiled error bar trends as a function of t for a

rotation parameter r1 and for a stretch parameter, U11 for the three objective functions.
These plots should be used for qualitative comparisons between Φ1

lattice, Φ
2
lattice, Φ

3
lattice. The

objective functions Φ1
lattice,Φ

2
lattice give approximately the same behavior for both rotation

and stretch. The error estimate for the rotation parameter r1 increases upon increasing σω(t)
but the error estimate for the stretch parameter U11 is not affected. Indeed, one can show
that the θ coordinate of the diffraction peak only depends on the stretching factor, U of H.
In other words, the uncertainties from the ω coordinate couple minimally to the stretch; this
is particularly evident in the construction of Φ1

lattice in Equation (3.256). However Figure 3.26
indicates that the spherical polar coordinate decomposition of the reciprocal vectors used
in Φ2

lattice also apparently decouples the ω coordinate from residuals involving U. Finally,
from Figure 3.26 we note that the objective function Φ3

lattice based on the inner product of
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measured and predicted reciprocal vectors is not able to separate the effect of the lattice
stretch from the influence of increasing σω.
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intervals. The objective functions Φ1
lattice,Φ

2
lattice perform similarly, while the function Φ3

lattice

is associated with greater uncertainty as uω is increased.

To see why the spherical polar coordinate decomposition of Φ2
lattice decouples ω from U,

consider the residual contribution from the µth diffraction peak, with angular coordinates
θ(µ), η(µ), ω(µ) and with corresponding reciprocal vector g(µ) = γ−1(θ(µ), η(µ), ω(µ)). The mag-
nitude coordinate of the µth residual equation of Φ2

lattice is expressed as

e2µ1 = ‖g(µ)‖ − ‖H−TG(µ)‖, (3.266)

where g(µ),G(µ) have been associated by previously indexing the diffraction peaks. The
magnitude of g(µ) is related to the planar spacing by (Boumann, 1957)

‖g(µ)‖ =
1

d(µ)
,

where d(µ) is the planar spacing on the µth lattice plane. Furthermore, Bragg’s law gives

‖g(µ)‖ =
2 sin θ(µ)

λ
, (3.267)
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Figure 3.26: Plot of U11 components vs δω for Φ1
lattice,Φ
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lattice. Error bars represent

95% confidence intervals. The objective functions Φ1
lattice,Φ

2
lattice perform similarly, being

independent of uω. The function Φ3
lattice is associated with linearly increasing uncertainty as

uω is increased.

where λ is the wavelength of radiation. The implication of (3.267) is that the magnitude
component of a reciprocal vector is only a function of the θ coordinate of the peak. We also
have

‖H−Tg(µ)‖ ≡
√

H−TG(µ) ·H−TG(µ) =
√

C−1 ·G(µ) ⊗G(µ), (3.268)

where C ≡ HTH = U2 is the right Cauchy-Green stretch tensor for the lattice. Upon
substituting (3.267) and (3.268) in (3.266) it is evident that the residual equation (3.266)
thus incorporates no rotation factor information, and is only dependent upon the θ coordinate
of the diffraction peak. Hence increasing the uncertainty in ω couples only weakly to the
stretch factor, U.

A more informative comparison between Φ1
lattice, Φ2

lattice, Φ3
lattice can be observed by

considering the covariance matrix at the solution, VΘ∗
lattice

. For the objective functions
Φ1

lattice,Φ
2
lattice, the covariance matrix has one large eigenvalue, with the corresponding eigen-

vector primarily in the (r1, r2, r3) subspace of the full Θlattice-space. This indicates that the
rotation factor R is the least well determined component of H for the ruby data. We explore
this observation further in §3.4.2.1.4.

Next, we visualize the local behavior of the objective functions by directly evaluating
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Φ2
lattice, Φ

3
lattice for model parameters near the minimizing solutionΘ∗

lattice. We probe the r1, r2
plane, holding the other parameters fixed. Contour plots for Φ2

lattice,Φ
3
lattice were generated

and are shown in Figures 3.27, 3.28 respectively. In these figures, 10 contours were drawn
from a ∆Φlattice range of [0, 100], where

∆Φlattice(Θlattice) ≡ Φ∗
lattice − Φlattice(Θlattice),

and
Φ∗

lattice ≡ Φlattice(Θ
∗
lattice).

We also superimpose the confidence region defined by VΘ∗
lattice

by a dashed black line, and
the confidence region defined by finding the exact bounds of ∆Φlattice in grey. The exact
boundaries of ∆Φlattice may be shown to correspond to χ2

0.95,9 by the relation

∆Φlattice,max =
1

2
χ2
0.95,9, (3.269)

which can be seen by expanding Φ(Θ) in a Taylor series expansion about Θ∗
lattice and using

(3.245),(3.246), see also (Bard, 1974). We observe that the uncertainty ellipsoid defined by
the covariance matrix, (3.246), agrees well with the exact results, and provides a slightly
conservative estimate of the confidence region. As suggested by the eigenvalue/eigenvector
observations in the previous paragraph, Figure 3.27 visually confirms that the objective
function Φ2

lattice is relatively ill determined along one direction in rotation space. Contrast
this with the local plot of Φ3

lattice in Figure 3.28, which does not have a pronounced eigenvalue
and has broader local curvature around the solutionΘ∗. The conclusion is that we apparently
lose information about the source of the uncertainty when forming the objective function in
the fashion of Φ3

lattice.
This analysis of the ruby single crystal provides validation of the overall method. Next

we move on to the next section where we apply our method to a strained titanium alloy. We
examine a single grains embedded in the polycrystal.

3.4.2.1.3.3 Application to strained polycrystal In this section we apply our un-
certainty framework to diffraction data taken from a polycrystalline sample of a titanium
alloy, β21s (BCC), while under tensile load and after plastic deformation. This material is
representative of the intended application for the X-ray diffraction experimental configura-
tion: analysis of bulk deformation in polycrystals.

Diffraction measurements were again taken at Argonne National Lab, Sector 1-ID, with
the same detector and beam energy as for the ruby experiment, see §3.4.2.1.3.1. The tension
axis was in the e2 direction, see Figure 3.13. The distance between the sample and the
detector was 1500 mm. From the diffraction volume a grain was selected and manually
centered on the rotation axis. Scans were taken for ω ∈ [−60◦, 60◦], with a rotation increment
of δω = 0.5◦. There were ∆ω/δω = 240 images in the detector image stack. We used the
same outlier rejection criteria described in the ruby experiment, see §3.4.2.1.3.1.
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Table 3.3: Cartesian components of the Lagrange strain tensor for the deformed titanium
alloy with uncertainty at 95% confidence. (in µε)

E11 E22 E33 E12 E23 E31

−7000± 110 4800± 220 −2200± 240 −4800± 100 1400± 110 −400± 130

Results The reference configuration used to define κ for the BCC titanium alloy was
constructed using a cubic unit cell with lattice parameter a = 3.252 Å. A representative
diffraction image is shown for a single ω frame in Figure 3.23, where a diffraction peak is
highlighted. The elongation of the peak along the η direction resulting spatial inhomogeneity
from plastic flow is evident. In order to solve for the lattice deformation, R,U, we used the
objective function Φ2

lattice, (3.261), in the least squares algorithm.
Our single scan uncertainty gave the precision on the rotation factor as 0.03◦, and the pre-

cision on the stretch corresponding to a strain uncertainty in a range from 100− 250µε. The
measured Lagrange strain components, (3.263), are tabulated in Table 3.3. To examine the
kinematics, the right stretch tensor, V = RURT is more informative than U for comparing
with anticipated results, those being extension along the loading axis, e2. However we note
that the high anisotropy in this crystal implies that uniaxial stress doesn’t imply uniaxial
strain, see (Efstathiou et al., 2010). Anisotropy also produces inhomogeneous deformation in
the polycrystal. Even so, we find that the eigenvectors of V are nearly coaxial with e1, e2, e3,
with eigenvalues (0.997, 1.008, 0.998), respectively, indicating uniaxial extension kinematics
along e2. We examine the stress state of this grain at the end of the next section.

3.4.2.1.4 Discussion In this section we further interpret the results of the experiments
described in §3.4.2.1.3. We first discuss observations resulting from the validation experi-
ments using the ruby single crystal, and end the section with a stress analysis of the titanium
alloy grain under load.

In §3.4.2.1.3 we showed that depending on the objective function used to formulate the
least squares problem we obtained different confidence regions around the solution param-
eters Θ∗

lattice, see Figures 3.27, 3.28. Generally speaking, for objective functions where the
residual involving ω was separated from the other residuals (e.g. Φ2

lattice) the confidence
region was stretched along one direction, and for objective functions where each residual
depends upon ω, the confidence region was broader.

We now seek to provide an interpretation for the direction of maximum uncertainty, evi-
dent in Figure 3.27. This direction corresponds to the maximum eigenvector of the covariance
matrix, VΘ∗

lattice
. Based on the experimental setup and associated resolution in angular co-

ordinates, see Figure 3.13, we might expect that one could reorient the sample by a rotation
with axis e2 without affecting the measured diffraction peak locations significantly. More
precisely stated, the resolution in ω is much less than that in 2θ or η, hence a reorientation
of the sample changing ω is less detectable than a change in the sample which would affect
2θ, η. Therefore we might expect that the maximum eigenvector of VΘ∗

lattice
is associated
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with a relatively poorly known rotation of the sample, R̄, such that

Φlattice(R̄R∗,U∗) ≈ Φlattice(R
∗,U∗), (3.270)

and where the rotation axis of R̄ is aligned with the axis of the rotation stage, e2. In (3.270)
we have used the notation (R∗,U∗) = Θ∗

lattice.
To investigate if this is true, we first project the maximal eigenvector of VΘ∗

lattice
, denoted

v1, into the (r1, r2, r3) subspace of Θlattice-space, the result being denoted v′
1. An interpreta-

tion of the maximal eigenvector is that we can walk from the solution Θ∗
lattice in the direction

v′
1 for a relatively substantial distance before achieving ∆Φmax; this is the notion which

defines a confidence region for multivariate least squares, see (Bard, 1974). We express this
traversal of rotation space by the parametrized equation

R2(t) ≡ R̂(r∗ + v′
1t), (3.271)

where t ∈ R parametrizes the path in rotation space with direction v′
1. The misorientation

between R∗ and R2(t) is denoted R′(t), and is expressed by

R′(t) = R2R
∗T.

Then denote the axis of rotation of R′(t) as q(t). An analysis of the relationship between
q(t) and the axis of rotation for the rotation stage, e2 shows that the direction of maximum
uncertainty, v1, indeed corresponds to applying an additional rotation about e2, since q(t) ·
e2 ≈ 1 for a large range of t, confirming our supposition at the end of the previous paragraph
with R′ ≡ R̄. This data is not presented due to its simple behavior.

Next we consider the uncertainty on stress tensor components given the uncertainty
on the kinematic quantities R∗,U∗. For example these computations are of interest for
investigations of residual stress fields or measurements of flow stresses on slip planes. We
apply our analysis to the titanium alloy described in §3.4.2.1.3.3 as an example. Since we
have established a finite deformation framework in this paper, we retain this generality here.

Consider the constitutive function for hyperelastic solids, e.g. the strain energy function,

W =W (H) = Ŵ (C) (3.272)

where W is the strain energy per unit reference volume, and the second equality is obtained
using the invariance ofW under change of observer in the physical configuration. Functional
forms of (3.272) for various material symmetries can be found in Green and Adkins (1970),
or in Chapter 2. The Piola stress with respect to the reference configuration is given in
general by the relation (Holzapfel, 2000; Liu, 2002)

P(H) = 2H
∂Ŵ

∂C
, (3.273)
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where the Piola stress is related to the Cauchy stress, T, by

T =
1

J
PHT, (3.274)

where J ≡ detH. Using the error propagation formula (3.259) on (3.273) gives the uncer-
tainty in the Piola stress components as

uPij
=

√√√√ 3∑
k,l=1

(
∂Pij

∂Hkl

uHkl

)2

=

√√√√ 3∑
k=1

(
∂Pij

∂rk
urk

)2

+
3∑

k,l=1

(
∂Pij

∂Ukl

uUkl

)2

, (3.275)

where i, j = 1, 2, 3, the uncertainties urk , uUkl
are obtained from the lattice deformation

parameters uncertainties, and the Piola stress components Pij are obtained from the consti-
tutive equation (3.273). The partial derivatives in (3.275) are evaluated at the least squares
solution (R∗,U∗). For small strains with negligible rotation we have a simpler relation. The
Cauchy stress is then given by

Tij = CijklEkl, (3.276)

where i, j, k, l = 1, 2, 3, Tij = Tji is the Cauchy stress, Cijkl are the elastic moduli, and Ekl

are the strain components. The uncertainty in this case is obtained by again using (3.259)
with (3.276), giving

uTij
=

√√√√ 3∑
k,l=1

(
∂Tij
∂Ekl

uEkl

)2

+
3∑

m,n,o,p=1

(
∂Tij

∂Cmnop

uCmnop

)2

, (3.277)

where uEij
are uncertainties for the strain and uCmnop are the uncertainties on the elastic

moduli.
We now carry out the described computations for the titanium alloy under load, de-

scribed in §3.4.2.1.3.3. For this material, elastic moduli have recently been measured using
in interesting application of HEDM by Efstathiou et al. (2010), who gives M11 = 110 GPa,
M12 = 74 GPa, and M44 = 89 GPa. The strain energy function is constructed to quadratic
order using the polynomial function bases for cubic symmetry given in (Green and Adkins,
1970) defined by

i1 ≡ E11 + E22 + E33, i2 ≡ E22E33 + E11E33 + E11E22, i3 ≡ E2
23 + E2

31 + E2
12.

The strain energy function is then written as

W (i1, i2, i3) = c1i
2
1 + c2i2 + c3i3,

where in this form the material parameters ci, i = 1, 2, 3 are given in terms of the traditional
moduli in Voigt notation by c1 ≡ M11/2, c2 ≡ M12 − M11, c3 ≡ M44. The Cauchy stress,
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Table 3.4: Cartesian components of the Cauchy stress tensor with uncertainty at 95% con-
fidence. (in MPa)

T11 T22 T33 T12 T23 T31
−1200± 30 580± 30 −510± 30 −130± 10 −40± 15 −190± 15

T, may be constructed directly using (3.274) along with error propagation from (3.259).
The full symbolic expressions are too unwieldy to record here. There are no uncertainties
available for the moduli of this particular titanium alloy, true to normal deficiencies in the
literature, so only uncertainty in the kinematic factors, R,U, were accounted for in carrying
out (3.259). In Table 3.4 we record the final Cauchy stress components (in MPa) along with
their uncertainty at 95% confidence. This crystal has a high degree of elastic anisotropy, so
the local stress cannot be expected to be perfectly uniaxial, see (Efstathiou et al., 2010) for
further discussion. The normal stresses are compressive in the e1, e3 directions, and tensile in
the e2 direction. There is approximately a 10% relative uncertainty in the stress components
in Table 3.4, according to our single scan uncertainty.

3.4.2.1.5 Summary In this section we have established a grain averaged modeling frame-
work for lattice refinement. This method provides an efficient methodology to state the
precision of lattice deformation measurements using monochromatic X-ray diffraction. The
framework we employ uses a weighted least squares method, with the positions of diffrac-
tion peaks as input data and with weight coefficients corresponding to uncertainties of the
positions of diffraction peaks. The positions of the diffraction peaks were similarly found
using the weighted least squares method, with pixel integrated intensities as input data and
with weight coefficients corresponding to experimentally measured variance in the recorded
intensity. Confidence intervals are found by computing the local curvature of the objective
function at the solution. An important requirement for this method to be optimal is having
continuous observations of diffraction peak intensity across multiple pixels and image frames.

We applied our framework to two monochromatic X-ray diffraction experiments. We
analyzed a ruby single crystal as a validation case and we were able to favorably compare
uncertainties from our single measurement predictions with those attained from standard
statistical analysis of repeated measurements. As an example application of our method for
in situ, high deformation studies, we also considered a deformed grain in a polycrystalline
titanium alloy, and found we had a rotation uncertainty of 0.03◦ and a stretch uncertainty
corresponding to a range from 100−250µε. Based on the nominal strain values of Table 3.3,
this uncertainty corresponds to about 5 - 20% uncertainty in the strain, with an average
uncertainty between 5 - 10%. This quantitative information on the deliverables of the high
energy diffraction method is crucial to determine, in order to use the technique to obtain
constitutive information, see §3.5.

We investigated three proposed objective functions, Φβ
lattice, β = 1, 2, 3, (3.261) used to

estimate the lattice deformation parameters, each of which made use of a simple kinematic
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relation relating reciprocal lattice vectors in a chosen reference configuration to the reciprocal
lattice vectors in the physical configuration (3.253). We found that the effect of error in the
ω coordinate on the precision of lattice deformation parameters depends on the form of the
objective function employed in the least squares algorithm. Generally speaking, formulations
of Φlattice which decouple residuals using the angular rotation coordinate, ω, from those which
do not are able to attain more incisive results. Furthermore, for the ruby data, the confidence
regions around the solution parameters generated by our method were able to be interpreted
based on physical characteristics of the experiment. Although this is an idealized data set,
this confirmation gives us further verification of our method.

Next we give comments related to improving the precision of measurements using this
X-ray diffraction method. As noted by Poulsen et al. (1997), due to the high energy of the
X-rays, the resolution of diffraction peaks in reciprocal space is relatively poor. We have
compared traditional bonded resistance strain gauges to the X-ray diffraction technique
in several places in this thesis. Strain gages have uncertainties of only < 5%, compared
with the < 20% quoted here. Clearly there is improvement required in the high energy
technique. Improving this resolution, hence improving precision on the peak locations and
therefore lattice deformation parameters, may be accomplished geometrically by moving the
detector further from the sample and increasing the area of the detector, or through improved
instrumentation, by simply increasing the pixel density on the detector. However, neither of
these solutions addresses the problem of the relatively large uncertainties in the ω-locations
of the peaks. On the other hand, since this analysis has shown that the precision of the
ω-coordinate has only a small effect on the precision of the lattice stretch parameters when
forming an appropriate objective function, improving the 2θ, η resolution of diffraction peaks
would likely increase the precision of lattice stretch measurements to some extent.

Another topic to investigate further would be the assumptions used to derive the confi-
dence regions, (3.246). As noted, there is some discretion in how to quantify the confidence
interval for a particular parameter, which is how confidence intervals are typically stated for
experimental results. The method we used to convert uncertainty regions into confidence
intervals may be overly conservative for certain experiments. We also note that the uncer-
tainty for the pixel integrated intensity has a large effect on the overall precision predicted
by the method. For our tests we used a fairly conservative estimate of σE = 0.2Emeas and
applied this estimate to each pixel, see §3.4.2.1.1, If a meticulous estimate of the variation in
integrated intensity is made, perhaps even considering individual pixels or regions of pixels
independently, we would expect increases in the estimated precision. A major improvement
to our algorithm would be to add methods to better handle the case of diffraction peaks
falling on a single omega frame as noted previously in the text, see also Winkler et al.
(1979). In our framework this case may require changes to the method of estimating un-
certainty based on the curvature of an objective function, and instead use some notion of a
digitisation of the uncertainty in the final lattice deformation parameters, corresponding to
the digitisation of the diffraction peak locations.

In closing, the framework we employed to determine lattice deformation parameters on a



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 233

grain averaged basis was highly successful in providing us much quantitative information. In
addition to an efficient tool to quantify uncertainty, we were able to deduce information about
the fundamental limitations of our experimental method, including intrinsic measurement
precision, the effect of experimentally controlled parameters, e.g. ∆ω, and the effect of
an analytically controlled parameter (choice of Φlattice) on the overall precision of a single
measurement.

Next, we consider the alternative to the grain averaged approach - a framework which for-
ward models the diffraction peaks, modifying microstructural parameters to match detailed
intensity data.
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Figure 3.27: Objective function Φ2
lattice in region around solution. 10 contours were drawn

from a ∆Φ2
lattice range of [0, 100], where ∆Φ2

lattice ≡ Φ2∗
lattice − Φ2

lattice. The grey ellipse defines
exact confidence region defined by ∆Φ2

lattice = 1
2
χ2
α=0.95,l=9, a dashed black line defines the

confidence region given by (3.246). The black ellipse is only slightly larger than the grey
ellipse; they are not distinguishable at this magnification for this objective function.
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3.4.2.2 Forward modeling approach

In this section is described a modification of the grain averaged modeling approach introduced
in §3.4.2.1 to obtain lattice deformation parameters along with microstructural information.
The use of a sufficiently general forward model enables the determination of attributes such
as the degree of intragranular misorientation for an individual grain.

In the traditional procedure of refinement, estimates for the volume averaged strain,
orientation, and center of mass position are obtained - a total of twelve parameters (3
for orientation, 6 for strain, and 3 for position). These parameters may be solved for by
using a least squares algorithm, where the residual equations are generated by comparing
measured and predicted locations of diffraction peaks, or equivalent coordinitizations of
such. Therefore for each diffraction peak there are three residual equations added to the
least squares objective function, see Equations (3.256)-(3.258). In the proposed modeling
approach, to the traditional list of up to twelve parameters characterizing the deformation
and position of the grain we add additional parameters which characterize properties of
the intragranular texture distribution. These additional parameters are used in a forward
model to broaden diffraction peaks in a consistent manner for every reflection in the grain.
Then we reformulate the inverse problem to solve for these parameters by forming least
squares residuals based on direct raw pixel intensities, a much larger data set than the three
dimensional location of the peak. For example, each peak may have pixel extents on the order
of 10-100 pixels, so the data utilization is much higher than for the traditional approach.
This methodology is similar in approach to the Rietveld method for whole pattern fitting of
powder diffraction, applied to high energy X-ray diffraction of polycrystals.

Besides a certain intrinsic appeal, the benefits of this modeling technique are that quan-
tifying data such as the dominant axis of intragranular misorientation becomes possible. In
accordance with crystal plasticity theory such information may give quantitative insight into
slip system activity in in situ experiments. This capability adds to the list of experimental
outcomes available from X-ray diffraction data. Additionally, since the forward (+inverse)
model prescribed here directly uses the raw experimental intensity data in the least squares
problem, we obtain modest improvements in the estimated precision of measurements of
grain averaged orientation made in this fashion.

The limitations of the approach are that the formulation becomes less quantitative as the
degree of intragranular mosaicity increases, and local diffraction peaks become non smooth.
Therefore the intended application for this modeling approach are in situ loading tests of
bulk polycrystals from a virgin state up to moderate plastic deformation (O(2%)).

In the next section, we develop the requisite background for our modeling approach.

3.4.2.2.1 Background In this section we describe the background information and
framework necessary to justify our approach to the modeling problem. Recall we require
a model which incorporates intragranular texture or mosaicity to generate local intensity
distributions of diffraction peaks. See §3.2 for the necessary introduction to X-ray diffrac-
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Figure 3.29: Maps of lattice of crystal, under convolution with finite size effect (or instrument
broadening) and spatial inhomogeneity, resulting in a smeared diffraction peak in the lower
right.

tion and Fourier transforms.
As a motivating visualization for this section, consider Figure 3.29. In the figure, a

reference region of perfect crystal generates a reciprocal space lattice with Fourier transform
Z(g), where g ∈ G3 denotes a vector in reciprocal space. Next, the lattice transform Z(g)
is convoluted with the finite size effect of the crystal, Σ(g), to broaden the reciprocal lattice
points to finite regions in reciprocal space, see §3.2.1.4. Broadening can also be considered
as a phenomenological outcome of instrumentation effects (instrument broadening) (Warren,
1969). A natural example of instrument broadening is from the finite bandwidth of the
incident beam intensity. Finally, the effect of the presence of multiple subdomains in the
crystallite is incorporated by transformation of the broadened reference reciprocal lattice
points into the current configuration. The resulting combination of all these effects results
in a broadened diffraction peak, the ω-slices of which are shown in the lower right image in
Figure 3.29. The details of our approach to these modeling steps are elucidated in the rest
of this section. The end result will be to formalize the above description in a framework
amenable to computation and application to experimental data.
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3.4.2.2.1.1 Derivation of local intensity based on intragranular state. In this
section we work out the details of the analytical procedure suggested by Figure 3.29. The
fundamental measurement of the type of X-ray diffraction experiments considered here is the
integrated intensity on a given pixel. Therefore at the end of this section we will have a model
to predict integrated intensities on a given pixel, given information about the intragranular
state. The prediction of pixel intensities based on microstructural information constitutes
the forward model. The inverse model is a standard least squares optimization, where
we compare predicted and measured individual pixel intensities to solve for the best fit
microstructural parameters.

We begin the derivation by re-examining the factors contributing to determining the
integrated intensity on a particular pixel, see §3.2 for additional background. Recall we are
considering monochromatic X-ray diffraction experiments where rotation of the crystal is
required. The physical process carried out in the rotating crystal method is the reorientation
of the crystal about an axis p through ω(t), see Figure 3.13. The integrated energy on a
pixel per unit cell, E , for a given exposure time interval is given by (compare to (3.97)):

E =

∫
t

∫
x

∫
y

IeI(g(p1, p2, ω(t)))dp1 ∧ dp2 ∧ dt

=

∫
ω

∫
x

∫
y

1

ω̇
IeI(g(p1, p2, ω))dp1 ∧ dp2 ∧ dω, (3.278)

where g : R3 → G3 is regarded as the reciprocal vector associated to the pixel location,
see §3.3.3, p1, p2 ∈ R2 are Cartesian position coordinates parametrizing the detector plane,
Ie ∈ R is Thomson polarization factor, I : G3 → R+ is the diffracted intensity function
over reciprocal space, and ω̇ ≡ ω,t = const is the angular velocity of rotation applied to the
sample. In experiments ω̇ will be assumed constant. The total integrated energy for the
pixel was previously shown to be given by multiplication of E times the number of unit cells,
N = V/Vc, so that

Etot ≡
V

Vc
E. (3.279)

Etot is therefore linear in the macroscopic volume of the crystal since Vc is constant for a
given material. The direct use of Equation (3.278) and (3.279) therefore gives the integrated
intensity on a given pixel and over a given δω-step. Explicitly, for the ith pixel, which has a
domain p1 ∈ [x1, x1 + δx], p2 ∈ [y1, y1 + δy], and ω ∈ [ω1, ω1 + δω] we have

Epixeli,δω =
V

Vc

∫ ωi+δω

ωi

∫ xi+δx

xi

∫ yi+δy

yi

1

ω̇
IeI(g(p1, p2, ω))dp1 ∧ dp2 ∧ dω. (3.280)

The GE 41-RT detector used in §3.4.2.1.3.1 had δx = δy = 200 µm, and δω = 0.5◦ for
example. The integral of (3.280) can be carried out by standard numerical methods such as
Gaussian quadrature. Therefore once we generate an expression for I(g) we have completed
the forward model giving Epixel,δω, since ω̇, Ie are essentially fixed constants.



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 239

For convenience, it will be useful to incorporate the volume amplification factor V/Vc of
(3.279) and (3.280) into the intensity function. Therefore we rewrite (3.280) as

Epixeli,δω =

∫ ωi+δω

ωi

∫ xi+δx

xi

∫ yi+δy

yi

1

ω̇
IeItot(g(p1, p2, ω))dp1 ∧ dp2 ∧ dω, (3.281)

where

Itot(g(p1, p2, ω)) ≡
V

Vc
I(g(p1, p2, ω)) (3.282)

is the total intensity function.

3.4.2.2.2 Intensity over reciprocal space. In Guiner (1963), see also §3.2, (3.96) the
intensity per unit cell I : G3 → R+is derived to be given by

I(g) =
1

V Vc

∑
i

F 2
hkl(i)|ΣV (g − g(i))|2, (3.283)

where hkl(i) is an enumeration of the nodes of reciprocal space, and g(i) is the corresponding
reciprocal lattice vector. Here the function ΣV : G3 → R+ is the Fourier transform of the
indicator function, σ(x), see Equation (3.21), which originates from the finite size effect of
the crystal with volume V , and F 2

hkl ∈ R is the structure factor, see §3.2.2.3. Note that the
definition of ΣV (g) in §3.2.1.4 is coupled to the overall volume of the crystal; the subscript
V is used to emphasize this relationship.

Next, by relating reciprocal lattice vectors g to a fixed reference configuration, we arrive
at a convenient incorporation of lattice deformation into the model. This description also
enables a straightforward prescription for modeling intragranular effects. We now examine
the details.

Effect of lattice deformation. We now consider the evolution of the reciprocal space
intensity function I given by (3.283) under deformation of the lattice. Just to be clear,
referring to lattice ‘deformation’ doesn’t necessarily imply that a physical change in shape
happens; orientation changes are also considered deformations in the sense implied here
here. To facilitate the adding lattice deformation to the forward model, following normal
notions in mechanics we construct a fixed reference configuration of the crystal lattice. This
configuration may be thought of as being constructed from tabulated values (i.e. literature
values) of lattice parameters corresponding to stress free configurations (from a powder
experiment in ambient conditions for example). See §3.3.5 for a quantitative discussion
of these reference configurations. In the reference lattice configuration, reciprocal space
is parametrized by vectors G, with reciprocal lattice nodes given by G(i). In the current
configuration, reciprocal space is parametrized by g, with reciprocal lattice nodes given by
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g(i). We have previously shown that the reference and current reciprocal lattice vectors are
related by (Edmiston et al., 2012)

g(i) = H−TG(i), (3.284)

where H is an invertible linear transformation describing the deformation of the lattice.
In our formulation of elastic plastic deformation in Chapter 2, H is also called the elastic
deformation. Also note that under the local deformationH, the volume of the crystal changes
to V = JV0, where J ≡ detH, and the unit cell volume changes to Vc = JVc,0, where V0, Vc,0
are the reference volumes of the macroscopic crystal and unit cell, respectively. In the
reciprocal space of the current configuration, where diffraction is actually measured, we then
modify (3.283) to read

I(g;H) =
1

J2V0Vc,0

∑
i

F 2
hkl(i)|ΣJV0(g −H−TG(i))|2, (3.285)

where the dependence on H is emphasized on the left hand side of (3.285). Equation (3.285)
completes the specification of I(g) for a perfect single crystal under lattice distortion H.

3.4.2.2.3 A simple forward model. We now generalize (3.285) to arrive at an expres-
sion for I(g) for a grain with intragranular texturing (i.e. spatial gradients in H(x)). To
simplify things we first consider diffraction from a discrete collection of macroscopic crys-
talline particles, each of the same material and with distinct volumes Vj. Then (3.282) shows
that the intensity is given by

Itot(g) =

Np∑
j

Vj
Vc
Ij(g), (3.286)

where Np is the number of particles in the distribution and

Ij(g) =
1

J2
j Vj,0Vc,0

N∑
i=1

ΣJjVj,0
(g −H−T

j G(i)) (3.287)

is the intensity per unit cell over the current reciprocal space coordinates g; adapted from
(3.285). Here the jth particle experiences a homogeneous lattice deformation Hj, with asso-
ciated initial volume Vj,0 and volume changes Jj = detHj. The material of each particle is
the same so that the unit cell volume Vc,0 is the same for all particles.

Next, taking the continuous limit of this construct to infinitesimal particle sizes, we
conceive of a volume distribution function g : GL(3,R) → R+. This function is such that
for a given lattice deformation H ∈ GL(3,R) reports the physical volume of particles with
that lattice deformation. As a quick example, for the discrete particle case described in the
last paragraph, g(Hj) = Vj,0 since each particle had a homogeneous deformation.
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The function g(H) is an obvious generalization of the ODF function from texture analysis,
which essentially is concerned with analysis of a function m′ : R3 → R+,m = m(R), where
R ∈ SO(3,R). Motivated by this, using the distribution g(H), we can taking the continuous
limit of (3.286) and obtain

Itot(g; g(H)) =

∫
H

g(H)

Vc
I(g; g(H))dH, (3.288)

and (3.285) becomes

I(g, g(H)) =
1

g(H) (JHVc,0)

∑
i=1

Σg(H)(g −H−TG(i)). (3.289)

The functions (3.289) and (3.288) in (3.281) therefore represent a forward model giving the
integrated intensities for a pixel, given the distribution function g. We now describe further
details of the model and consider how to implement it numerically.

First, assume we have prescribed an estimate for the volume function g(H). With g(H) in
hand, next identify a given pixel where diffraction is expected to occur (that is, for pixels in
and nearby experimentally measured diffraction peaks). Then, compute the forward modeled
integrated intensity based on g(H) by quadrature over the pixel coordinates

Epixel,δω(; g(H)) =

∫ ωi+δω

ωi

∫ xi+δx

xi

∫ yi+δy

yi

1

ω̇
IeItot(g(p1, p2, ω); g(H))dp1 ∧ dp2 ∧ dω, (3.290)

where Itot(g(p1, p2, ω); g(H)) is computed from (3.288). In words: at each pixel quadrature
point p1, p2, ω, compute the corresponding test reciprocal vector gq = ĝ(p1, p2, ω), this func-
tion is described in §3.3.3. Then at the point gq in reciprocal space, evaluate Itot(gq) by
computing (3.288). The use of (3.288) requires integrating over H-space, via quadrature,
and for each G(i) in the reference lattice, evaluating Σg(H)(gq − H−TG(i)). Note that the

properties of the reciprocal lattice are such that only one G(i) is likely to contribute to the
consideration at gq, simplifying things somewhat (see §3.2).

Next, recall from §3.2 that the properties of Σ are such that Σ(0) = g(H∗), where H∗

is the volume averaged value of H and that it is a rapidly decaying function. The radius of
the function Σ(g) is normally assumed to be proportional to the physical radius of the finite
body under consideration. Previously, in §3.2.1.4, Equation (3.45) we used the estimate
s0 = 1/(2r), where r is the physical radius of the particle and s0 is the distance in reciprocal
space from a node g∗ where Σ(g − g∗) > 0. In terms of the volume function g(H) we have,
for a particle with spherical volume

s0 =
1

2 (3/4πg(H))1/3
. (3.291)
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Putting these properties together, the simplest form of the size effect function Σ(g) consistent
with our previous analysis is

Σ(g) =

{
Σ(0) |g| < s0(g(H))

Σ(g) = 0 else,
(3.292)

with s0(g(H)) given by (3.291). This completes the specification of the intensity contribution
to the quadrature point at p1, p2, ω. Repeating this for all pixels gives the full, local intensity
distribution predicted by the volume distribution g.

The above method, which requires two integrations (over pixels and over the crystal,
g(H)) allows for incorporating the size effect from nearby crystals by explicitly using the
size function Σ. However this method is expensive to compute, since to have a well behaved
minimization procedure we must evaluate the forward model not just on pixels where in-
tensity was observed but on nearby pixels as well. Many of these test points may turn out
to be outside the radius s0 so that Σ(g) = 0 at those points. This adds inefficiency to the
computation of the integrated pixel intensity.

Motivated to improve this, we now prescribe a more computationally efficient approach
to the forward modeling problem. We obtain the intensity produced in the detector image
stack, (§3.3.1.1), by the following method. We first integrate g(H) directly over the regions
where g(H) > 0. For quadrature point of this integration, and for each G(i) in the reciprocal
lattice, compute the reciprocal vector H−TG(i), and find the p1, p2, ω voxel where diffraction
will be observed. The intensity at that voxel is then obtained from product of the structure
factor of the G(i) and the volume g(H) at the quadrature point, and the nominal beam
intensity, I0. Explicitly, this voxel location is obtained from solving (3.189) and (3.175) for
r̂p, the position on the detector. This method is more efficient than the previous description
since the pixel integration does not require any Gaussian quadrature over the pixel locations
per se, merely a summation over contributions to a given p1, p2, δω voxel.

We now describe this methodology more precisely. We begin by ignoring the formal size
effect. This is a practically useful simplification for the type of experiments for which the
present model is meant to apply, where finite size effects are not likely to be measurable, see
Figure 3.5 and associated text for example. Upon this simple case we show how contributions
to peak broadening such as the finite size effect can be easily added on to the basic framework
of analysis.

We directly express the integrated intensity field over all p1, p2, ω space in the form

E(p1, p2, ω; g(H),x) =
1

ω̇

N∑
i=1

∫
H

g(H)

Vc
r̂p(H

−TG(i),x)I0c(H
−TG(i),x)F 2

hkl(i), (3.293)

where r̂p : G3 → R3 maps reciprocal vectors to pixel locations in the image stack, and is
a function of the precession x, I0 is the nominal beam intensity, and c is the polarization
correction, proportional to λ3/(sin 2θ cos η) where θ, η are the angular coordinates of the
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pixel, see (3.116). See §3.3.3 for background information on the conversion function r̂p. Since
it is difficult to convey formally, the functionE(p1, p2, ω; g(H),x) evaluates to zero when there
is no diffraction condition possible given the available microstructure. The summation in
(3.293) is over all reciprocal lattice vectors G(i). This formulation is more efficient than the
previous formulation because we compute the integrated intensity on a particular pixel (e.g.
a particular (p1, p2, ω) voxel) by summing contributions to individual pixel domains from
the quadrature evaluations of the integration on the right hand side of (3.293). Essentially,
in this form, the integration over pixels is reduced to a simple quadrature over the function
g(H), and the resolution of the local pixel intensity value is governed by the number of
quadrature points over the integration region in H-space. We investigate the influence of
the quadrature resolution on the forward simulated diffraction peaks in the results section.

We now add on additional factors to (3.293) which may be relevant to consider. To
incorporate modeling of size effects, we add an additional integration step over each node
G(i), so that we have

E(g(H)) =
∑
i=1

∫
G,node

∫
H

[
1

g(H)
Σg(H)(G−G(i))

]
g(H)r̂p(H

−TG(i),x)I0cF
2
hkl(i). (3.294)

To add in the wavelength effect (a component of instrument broadening) add an additional
integration layer

E =
∑
i=1

∫
λ

∫
G,node

∫
H

[
1

g(H)
Σg(H)(G−G(i))

]
g(H)r̂p(H

−TG(i),x)I(λ)cF 2
hkl(i), (3.295)

where the input intensity spread is expressed in reduced dimensional form by

I(λ) = I0 exp

[
−
(
λ− λ̄

σλ

)2
]
, (3.296)

where λ̄ is the nominal wavelength, and σλ is the spread in the wavelengths. A typical spread
at Sector 1, Advanced Photon Source is σλ ≈ 0.001λ̄. In order to account for instrumentation
broadening apart from the wavelength effect, this effect can be acceptably modeled by an
additional term of the form Σinst:

E(g(H)) =
∑

i=1

∫
G,node

Σinst(G−G(i))

∫
λ

I(λ)

∫
G,node

∫
H

[
1

g(H)
Σg(H)(G−G(i))

]
·

g(H)r̂p(H
−TG(i),x)cF 2

hkl(i). (3.297)

Although clearly similar in its resulting effect on the diffraction pattern to the size effect
Σ, isotropic broadening from Σinst is in principle distinguishable from size broadening Σg(H)

since it remains constant throughout the test. Therefore it can likely be extracted from a
calibration procedure, although this was not attempted for the current contribution.
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3.4.2.2.3.1 Model equations In this section, we include the least squares model
to complete the treatment and lead into applications. In the traditional lattice refinement
procedure (Edmiston et al., 2011), the model parameters consist of the array

Θ = (r1, r2, r3, U11, U22, U33, U23, U13, U12, p1, p2, p3) (3.298)

= (R,U,x), (3.299)

where R(r1, r2, r3),U(U11, U22, U33, U23, U13, U12) are the orthogonal and symmetric positive
definite, resp., polar decomposition factors of the volume averaged H and x = (x1, x2, x3)
is the precession or center of mass of the grain. These standard model parameters were
utilized in §3.4.2.1. Residuals in the objective function (3.243) in that case were based on
the locations of the center of a Gaussian function fit to the local intensity, see (3.256)-(3.258).

In contrast, the present model requires residuals to instead be formed directly on pixel
intensities, with additional parameters added to the Θ defined in (3.299) which contain
functional information for approximating g(H). In effect, the broadening which was modeled
with the Gaussian functions in §3.4.2.1, and shown in Figure 3.23, is now modeled by the
specification of g(H). To form residuals, let Adata = {px, py, ω : Idata(px, py, ω) > Ithresh} be
the set of voxels which have been indexed to a particular grain, according to the experimental
measurement and let Bsim = {px, py, ω : Isim(px, py, ω) > 0} be the set of voxels representing
the forward modeled intensity from the same grain. Here Idata, Isim represent the values for
integrated intensity on the voxel. Then the residual for the νth diffraction peak is efficiently
expressed as

eνµ =


(Idata − Isim)(px, py, ω)

(µ) (px, py, ω)
(µ) ∈ Adata ∩Bsim

(Idata(px, py, ω)
(µ) (px, py, ω)

(µ) ∈ Adata −Bsim

(Isim(px, py, ω)
(µ) (px, py, ω)

(µ) ∈ Bsim − Adata,

(3.300)

where µ is an index into the number of pixels in Adata ∪ Bsim In other words, we penalize
the forward modeled intensity in the obvious way where simulation and data overlap, and
also for having a broader extent than the experimental data. The success of this approach
is contingent upon getting good initial guesses for the data, so that the simulated intensity
and experimental intensity distributions overlap. The objective function based on (3.300) is
written as

Φ(Θ) =
N∑
ν=1

Nν∑
µ=1

(
eνµ
)2
, (3.301)

where Nν is the number of pixels in the νth diffraction peak. Uncertainty can be incorporated
into the objective function as was done in §3.4.2.1.1.

Summary. In this section we have developed the framework for computing a forward
modeled diffraction pattern given the intragranular volume distribution function g(H). The
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functions (3.289), (3.288), in (3.281) represents a forward model giving the integrated inten-
sities on detector pixels, which can be compared to experimental pixel values. We described
a general algorithm for generating the integrated intensities from these functions, through
(3.288). This was found to be computationally inefficient, so that the methods culminating
in (3.297) were found to give a more efficient implementation. We also described the usage
of the forward model in a least squares system by assigning residual equations (3.300). Thus
far the core new component over the analysis in §3.4.2.1 is the volume distribution function
g(H), which has not been addressed in terms of implementation.

In the next section we describe suggested methods for assigning g(H) by introducing
reduced degree of freedom specification for the function. This limits the method from mod-
eling arbitrary intensity distributions. Based on experimental observations, however, this is
not a limitation to deduce insightful material behavior up to moderate plastic strain.

3.4.2.2.4 DOF reduction and numerical implementation. In the previous section,
we developed a forward modeling approach to determine the local intensity of diffraction
peaks. In essence, we have reduced question of simulating diffraction peak intensities to the
determination of the volume distribution function over H-space, g(H), see Equation (3.281).
The function g represents the projection of spatial inhomogeneity into the space which the
considered class of X-ray diffraction experiments can measure, H-space, see Figure 3.12. In
this section we investigate suggested forms for g(H) which can give us a quantification of the
anisotropic broadening of the diffraction peaks.Anisotropic broadening is of interest since
it is clearly distinguishable from size effect or instrument broadening, and originates from
microstructural phenomena.

Philosophically, determining g(H) is no different than curve fitting any function R9 →
R+. However, fitting a fully nine-dimensional g(H) would be computationally prohibitive.
Besides, the nature of the experimental resolution we can attain limits the ability to accu-
rately quantify many dimensions of H; strain broadening will be difficult to pick up and
separate from wavelength broadening for example. Therefore instead of the full fitting a
function over 9−dimensional space we consider a subspace H(θ), parametrized by θ, with
dimθ ≤ dimH = 9. For example, we can use the polar decomposition of H to suggest the
three dimensional subspace parametrized by

H(θ) = R(θ)U, (3.302)

where θ ∈ R3 parametrizes orientation space via angle axis parameters, for example. There-
fore with the parametrization of H-space given by (3.302), g(H(θ)) = g(θ) would represent
very much akin to the orientation distribution function from classical texture analysis, al-
though our function is not understood as a probability density function. As a potentially
useful extension of this, the sensitivity of our experiments to volumetric lattice strain is
greater than for isochoric strains, which motivates the possibility of adding to the orienta-
tion parameters a degree of freedom for volumetric changes. Therefore we may also suggest
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the four dimensional subspace parametrization

H(θ) = R(θ1, θ2, θ3)U(θ4), (3.303)

where e.g. U(θ4) = θ
1/3
4 Ū, and Ū is the isochoric part of U.

No matter which space g(θ) is represented over, it should be understood that the deter-
mination of g(θ) has many potential avenues for exploration, but it is essentially a problem of
curve fitting, separate from any governing rules of physics besides the requirement g(θ) ≥ 0.
For a quite general approximation to g(θ) we may use a finite element inspired discretization
over θ-space. For example, for the standard linear interpolation functions, we discretize θ-
domain assign the N nodal points θi, i = 1, 2, ..., N , basis functions Φi(θ), with Φi(θj) = δij,

and solve for the nodal values g(θi) ≡ gi. Then with the assigned basis functions Φi(θ) we
generate the entire distribution by

g(θ) =
N∑
i

giΦi(θ). (3.304)

The number of degrees of freedom allowed to g(θ) is only limited by computational expense
and experimental resolution, by the number of dimensions to allow θ as well as the number
of nodal points taken per dimension.

As an alternative to the brute force expansion (3.304) we attempt to describe g(θ) based
on only a few degrees of freedom. Essentially, we Taylor expand g(θ) about a point in θ-space
which corresponds to the maximum physical volume of crystal content. An example would
be to expand around the grain volume averaged deformation, H∗. This is similar in idea
to that given in Eschner (1993). We will consider this method using the orientation space
parametrization using (3.302). This is because the orientation subspace is most familiar to
existing literature, has the most experimental resolution, and has the convenient property of
being three dimensional, so that the space involved is readily visualized. We work out the
details in the next section.

3.4.2.2.5 ODF deformation. Here now examine restricted domain volume function
g(θ), defined over the orientation subspace of H-space, and parametrized by (3.302). For
motivation of the proposed view, consider approximate shapes for the projection of spatial
inhomogeneity of a grain into orientation space. See Figure 3.12 for a depiction of the
projection πH. Intuitively, for an perfect, undeformed grain, the image of πH in orientation
space would be a sphere with small radius, centered at a point r∗ representing the grain
averaged orientation. We can coordinitize this initial sphere by the unit ball B3. As the grain
deforms plastically in the physical space, the orientation image of the grain is translated and
stretched and rotated into roughly an ellipsoid. For a schematic example of the evolution
from a perfect crystal to a deformed one compare the diffraction peaks in Figure 3.22 to
Figure 3.23. Such a deformation process can be described by the action of a symmetric 3 by
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3 matrixA on the reference projection of the crystal, the spherical region of the nearly perfect
state, much as the linear transformation H acts on the reference lattice vectors in §3.3.5. In
order to make this discussion more precise we must prescribe coordinate conventions.

Orientation coordinates The orientation space we consider here is SO(3,R). The overall
coordinate transformations required are depicted in Figure 3.30. We impose an orientation-
reference configuration, γ, as a spherical ball of radius one, B3. In γ, coordinates are denoted
as γ = γ1, γ2, γ3. We can then impose the natural spherical polar coordinates for the ball,
R,Θ,Φ according to the standard spherical polar map

γ ′ : (R,Θ,Φ) → (γ1, γ2, γ3)|γ ′(R,Θ,Φ) = Reρ(Θ,Φ), (3.305)

with the spherical polar map defined in (A.1). Formally speaking, the spherical polar system
with coordinates R,Θ,Φ may be considered another reference configuration γ′, with γ ′ : γ′ 7→
γ given by (3.305)

We pause here to note that the choice of a spherical reference region γ is guided only by
the physically reasonable assertion that the orientation distribution of a grain has a dominant
mean value and other orientations in the grain are modeled as perturbations from the mean
value. Other prescribed regions, such as cubic, may also be useful or give better fits to
the data. If these details are important a broader orientation region can be modeled with
the approach of (3.304). For the goals of the present work we only would like to quantify
the anisotropic broadening, so the choice of the reference region does not greatly effect the
phenomena we are attempting to capture.

Next, we must consider the map from the unit reference ball, γ to orientation space,
denoted

θ : γ → SO(3,R)|θ(γ) = r̂ ∈ SO(3,R), (3.306)

see Figure 3.30. The mapping θ into orientation space is of the form

θ(γ) = θ0 +∆(γ), (3.307)

where θ0 represents the volume averaged center of the projection of the grain into SO(3,R),
and ∆(γ) represents deviations from the center point.

Next we present several potential avenues for advancement of the model by prescribing
∆(γ). Generally speaking, like in the theory of elastic-plastic deformation of Chapter 2, we
can assign a field A(γ), where A ∈ sym , so that relative to the base point θ0, and for a
path in γ parametrized by γ(s) as we have the mapped location

θ(γ(s)) = θ0 +

∫ s

0

A(γ(s))
dγ

ds
ds, (3.308)

where θ0 ≡ θ(0). However being required to determine a field A(γ) clearly does not giving
any reduction in degrees of freedom over a general ODF, (3.304). Therefore we further
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restrict the degrees of freedom afforded to θ and impose an A which is homogeneous over
the reference region γ, reducing (3.308) to

θ(γ) = θ0 +Aγ, (3.309)

since ∫ s

0

A(γ(s))
dγ

ds
ds = A

∫ s

0

dγ

ds
ds = A

∫ γ

0

dγ = Aγ. (3.310)

The mapping prescribed by (3.309) would be enough to obtain the type of information
sought by this model, therefore we can move on to applications. However for a given crystal,
fitting A according to the expression (3.309) is not invariant under changes of frame. For
example changes of frame which would clearly assign different values for θ0. Then, due
to the curvature of orientation space, for each point θ0 associated with a particular frame,
executing the least squares algorithm for A could potentially give different results for A
for the same crystal. For the purposes of the present study where we only want to fit
intragranular misorientations in any fashion, this is not really a concern, but invariance of
A under different reference configurations would be a desirable feature to build into our
construction. This is because then A would be eligible to serve as a proper constitutive
variable for theories of deformable bodies intended to operate at the length scales probed by
these experiments. For example, several authors have proposed including the geometrically
necessary dislocation content, ξ in constitutive equations for plastic flow and yield, see
Chapter 2. The physical character of A is very similar to ξ in that it connotes an idea of
misorientation. In the future, if the phenomenological theories of plasticity incorporating ξ
are to be useful, experimental studies must be able to measure ξ, by spatially probing the
lattice at a finer resolution than is used for these experiments. However these measurements
will always have an associated length scale of observation below which spatial resolution
cannot be obtained, see Figure 3.12. Therefore the modeling of the present section is still of
use to those studies as well, in which case the projection of the homogeneity in the form of
A is crucial.

To make A frame invariant, we remove the dependence of A from θ0 by using a slightly
different construction for θ than in (3.309). We consider mappings through A from γ, as
before, but we restrict the mappings to the origin of SO(3,R), instead of near to the point θ0.
Then, to get to the final point in orientation space θ(γ), in place of the summation through
θ0 we map from the point Aγ by matrix multiplying the rotation tensor corresponding to
Aγ and the grain averaged orientation R(θ0). Explicitly instead of (3.309) we have

θ(γ) = θ(γ;A,θ0) = r̂(R0R̂(Aγ)), (3.311)

where r̂ denotes the map from rotation tensors to angle axis parameters, R̂ denotes the
map from angle axis parameters to rotation tensors, and R0 ≡ R̂(θ0) is the rotation tensor
for the grain center of volume. In summary, we perform the matrix operation between the
perturbation from A and the grain averaged orientation R0 and then remap to orientation
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space to arrive at θ(γ). Under this construction, A will be as close to invariant under changes
of reference frame as possible, since changes of frame and their distortions of orientation space
will naturally be nominally accounted for by using the product mapping via R0. There are
small discrepancies upon change of frame due to the non zero curvature of SO(3,R) even at
the origin, but these are unavoidable and acceptably small.

Next we consider the effect of g under the prescribed transformations. The full map from
spherical polar coordinates reference configuration γ′ to orientation space is given by the
composition

ψ = θ ◦ γ ′, (3.312)

where θ0 : R3 → SO(3,R)|θ(γ) = r̂(R̂(θ0)R̂(Aγ)) is the positioning of the center of the
ellipse in the full parameter space. Frame invariance requires that the volume distribution
function g(θ) be only a function of A and not θ0. g(θ) may then be written over the
coordinates in γ′ by taking

g(θ) = (g ◦ θ ◦ γ ′)(R,Θ,Φ) = g(A[Reρ(Θ,Φ)]) = ḡ(R,Θ,Φ;A). (3.313)

As an aside, the important question of frame invariance does not arise when considering
excursions into the strain subspace such as (3.303), since U is already observer invariant.
Figure 3.30 depicts the analysis in this section, showing the projection of spatial inhomo-
geneity into the orientation subspace, and the approximation from g(θ).

Next we consider specific functional forms for ḡ(R,Θ,Φ;A), in order to expose its spec-
ification to a least squares algorithm, §3.4.1.

Forms for intragranular ODF Suggestions for the functional representation of the in-
tragranular ODF ḡ are described in this section. A simple sufficiently useful form is the
anisotropic Gaussian function

g(R,Θ,Φ) = g0 exp [−(γ ·ATAγ)], (3.314)

where γ = γ ′(R,Θ,Φ) is the position in γ using a spherical polar coordinate chart, and
g0 ∈ R+ is a scaling factor. Equation (3.314) is useful because it exposes anisotropic evolu-
tion of intragranular texture; if the eigenvalues of A differ from one another then anisotropy
is present. Furthermore, Gaussian functions have enjoyed a long history of usage in crystal-
lography, and it automatically satisfies the condition g ≥ 0. In Bunge (1999, eqn 20, p 425)
the exponential form like (3.314) is also used in a classical texture exposition. The model
parameters for (3.314) are the 6 components of the symmetric A. Other potential forms
include separate constructions for A and ḡ, such as taking

ḡ(R,Θ,Φ) = (k0 + k1R)
2, (3.315)

along with an isotropic texture evolution,

A(α) = αI. (3.316)
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Figure 3.30: Maps of configurations over which the function g is defined, which produce the
final diffraction peaks. The projection of spatial inhomogeneity into a subspace of H-space
gives rise to the function g. The domain of this function is defined to be the result of the
linear transformation A operating on a reference ball in the configuration γ, thereby giving
microstructural content to the estimated values for A.
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By construction, (3.315) also enforces the condition g ≥ 0. A third proposed formulation
extending (3.316), is that we could introduce a variable number of degrees of freedom for
A, between one and six. The form selected for ḡ will have implications for the type of
microstructural information which can be extracted from this modeling technique. In this
study we found the form (3.314) to be sufficient and effective.

Dislocation content In theories of mechanics of elastic plastic deformation, several au-
thors have postulated the dependence of the yield function on the local dislocation content,
ξ, (Acharya and Bassani, 2000; Gupta et al., 2007). Since plastic behavior is to a great extent
determined by the yield function, experimentally quantifying ξ would be of interest when
fitting constitutive functions to data. In our experiments, the X-ray beam is larger than the
grain size. Therefore we can obtain an estimate for the volume of the grain based on the
integrated intensity of the pixel, see Equation (3.127). This enables the determination of a
length scale for the individual grain measurements, based on the grain diameter, dgrain V

1/3,
where V is the grain volume. If the beam size were small enough to probe local microstruc-
ture, then the available length scale would be the beam diameter, w, see Figure 3.12. This
length scale information in conjunction with the modeling technique presented here, we are
able to thereby obtain a quantity which at least captures the flavor of a dislocation con-
tent. To see this we can compute the volume weighted moment of the intragranular volume
distribution over H-space as

ΣH =

∫
H

g(H)(H− H̄)⊗ (H− H̄)dH, (3.317)

which represents a measure of the spreading of the grain in H-space (or a subspace, H(θ).
Dividing by the available length scale, d, where d is either grain diameter or beam width
then gives

1

d
ΣH = ΣH,d[L

2], (3.318)

where the notation [·] denotes units of the particular expression. The integral (3.317) has
units of L3 since g has units of volume. The dimension of ΣH,d has the same dimensions as
the volume integral of the dislocation content introduced in (2.16),

ξ =

∫
V

ξdV. (3.319)

Then taking (3.314) in (3.317), evaluating at the origin of orientation space so that the
moment is H− H̄ ≈ Aγ gives

Σγ =

∫
x

exp [−(γ ·ATAγ)]Aγ ⊗Aγdγ, (3.320)

Σγ = A

(∫
γ

exp [−(γ ·ATAγ)]γ ⊗ γdγ

)
AT. (3.321)

In the next section we test out the model on experimental data.
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3.4.2.2.6 Experimental application. In this section we apply the modeling method-
ology developed in the previous sections to experimental data. We tested a titanium (HCP)
alloy with in-situ tension into the plastic region to about 2% strain. The original objectives
of the creators of the experiment (Matt Miller, Cornell University) were to compare two
heat treatments for a Ti-7Al alloy using a tension experiment with X-ray diffraction in
situ . One alloy was an air cooled specimen and the other a ice water quenched specimen,
which had different macroscopic behaviors with regard to plastic properties such as yield
strength and hardening. These experiments were performed in collaboration with the group
at LLNL of which I participate. I am grateful for their allowing me access to the data from
the experiment.

Description of experimental method. The experiments were performed at the Ad-
vanced Photon Source, sector 1-ID. The basic procedure is to load the sample in uniaxial
tension into the plastic region while taking XRD measurements. In a previous study, they
found that halting the extension of the sample in order to take diffraction measurements led
to undesirable drops in the sample tension due to relaxation in the load frame. The devel-
opment of new hardware capabilities at this particular beamline which greatly reduces the
time required for each full rotation scan, to on the order on 30 seconds. Therefore this team
decided to attempt a continuous load scan, where the load frame extension rate was kept
as constant as possible, with diffraction measurements taken continuously throughout the
deformation. This avoided the load frame relaxation problem they observed in the previous
study. For example, the macroscopic load curve is indicated in Figure 3.31. The macroscopic
stress on the vertical axis is measured by the external load frame, solid points indicate where
diffraction measurements were taken. The stress level is plotted versus the diffraction images
themselves in Figure 3.32. The finite speed at which the diffraction measurement can be
taken (the time required to scan ∆ω) introduces some error into this process. However the
macroscopic extension rate was set slow enough so that this error was deemed acceptable.

There are other challenges in the experiment which should be addressed. In this thesis
we have frequently compared the high energy X-ray diffraction measurements with a bonded
strain gage, in §3.4.2.1.5 for example. Appealing to this comparison again, unlike a strain
gage, the X-ray diffraction volume in the present experiment is not naturally fixed to the
material. Therefore the diffraction volume can change due to relative translations between
the incident beam and the material. In the present experiment, the beam was kept centered
on the same material location by tracking the precession vectors x for the grains, and keeping
a designated master grain in as close to the same position as possible. This analysis was
complemented by simple visual verification of surface features on the sample by a high
resolution camera. In the end, the researchers found that the simpler visual technique was
sufficient for keeping the same material in the diffraction volume. The grain tracking takes
longer time than the scan itself since it requires analysis of the X-ray diffraction images,
therefore the visual sufficiency was an important learning step.
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Figure 3.31: σ vs ε for the continuous load scan. Solid points indicate where diffraction
measurements were taken.

The detector was the same GE 41RT detector used in §3.4.2.1.3.1, with 2048 x 2048 pixels,
and 200 µm pixel size. The beam energy was 50keV. The Ti-7Al sample had a 1 mm by 1
mm cross section. The sample was positioned 880 mm from the specimen. The beam size
was 1 mm by 300 µm, fully encompassing the cross section of the material. Approximately
300 grains were present in this diffraction volume. A master grain was selected in the sample
and was centered on the rotation axis. The scans were taken for ω ∈ [−60◦, 60◦], in 240 steps
for an angular rotation increment of δω = 0.5◦. The data analysis was complicated somewhat
by the fact that diffraction scans were taken at three vertical positions along the sample, at
0,±150µm, these displacements zeroed to the master grain position. This was done in order
to assure that at least the master grain was sampled throughout the test. Figure 3.33 depicts
the experimental situation. The master grain in the polycrystal is schematically illustrated.
The three different scan regions are also shown relative to the master grain. The limitation
on the vertical beam size of 300 µm is due to limitations in data analysis capabilities as more
grains are in the diffraction volume. Due to the sequential vertical scanning, the net time
interval for which the same region was sampled was approximately three minutes. The load
rate was chosen to match this time scale, in order to limit the error introduced by measuring
the lattice at a varying load.

3.4.2.2.7 Results We now present the analysis of the experimental data. In Figure 3.34
we show the evolution of a representative diffraction peak as it is tracked throughout the
deformation. The images represent raw pixel intensities on the detector. Each quadrant in
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Figure 3.32: Uniaxial stress vs image number for continuous load scan. This is a transforma-
tion of the data in Figure 3.31 to show the stress at the times when diffraction measurements
were taken.

{
beam section 1 (+150 m)m

beam section 2 (0 m)m

beam section 3 (-150 m)m

master grain

Diffraction volumes:

s0

s

Ti-7Al polycrystal

300 mm

1 mm

Figure 3.33: Depiction of continuous load scan used to test the forward model. The beam
encompasses the width of the material specimen, 1 mm and is 300 µm tall. The beam was
scanned in a sequence of three positions at 0,±150 µm relative to the master grain to ensure
that the master grain would not be lost in the data due to relative displacements between
the material and beam.
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Figure 3.34: Raw data reflections from the continuous loading. ω-slices of the peak are
shown in each box. The spreading in the peak is due to evolving spatial inhomogeneity in
the grain. The brightness of the peak changes during the load, this is because the nominal
intensity to the sample was changed as the test was executed do counteract dimming relative
to the threshold value from plastic deformation.

the figure, separated by solid lines, represents the diffraction peak at a different load step.
See Figure 3.32 for the stress level at each load step. Multiple tiles in a quadrant indicate
that the peak fell over multiple ω-slices. In these cases the sequence should be read in the
comic strip order left-right, top-bottom, as ω increases. Blue points in the figure indicate
that intensities were below the thresholding level for that particular image. The red mark
indicates the location of the center of the diffraction peak, using the local Gaussian fitting
described in §3.4.2.1. The increasing angular smearing of the peak has microstructural origin;
this is the motivation for pursuing the modeling contained in this section. Also note that
the brightness of the peak changes during the loading; this is because the nominal intensity
to the sample was changed as the test was executed do counteract dimming relative to the
threshold value as a result of plastic deformation.

In application of the model to data we used the simplest possible modeling framework,
starting from the combination given by (3.293). Therefore we ignore broadening due to
particle size effects. We add wavelength broadening by using the nominal intensity function
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(3.296) with σλ = 0.001λ̄. All together, the pixel intensities use an integrated intensity
distribution of the form of (3.293), with the field

Etot(p1, p2, ω; g(θ)) = k

N∑
i=1

∫
λ

∫
θ

g(θ)r̂p(H(θ)−TG(i),x)I(λ)c(H(θ)−TG(i))F 2
hkl(i)dλ ∧ dθ

(3.322)

=
N∑
i=1

k

∫
λ

∫
R×Θ×Φ

(
¯g(R,Θ,Φ;A)r̂p(H(θ(R,Θ,Φ))−TG(i),x)I(λ)

)
·(

c(i)F 2
hkl(i)

(
det

∂θ

∂η

)
dλ ∧ dR ∧ dΘ ∧ dΦ

)
,

(3.323)

where η = R,Θ,Φ, we use the short hand c(i) ≡ c(H(θ)−TG(i)), and where the constant
k ≡ 1/(ω̇Vc), and H(θ) = R(θ)U∗, where U∗ is regarded as a constant tensor representing
the best grain averaged lattice strain fit. In other words, in passing from (3.322) to (3.323) we
pull back the integration over θ-space to the reference orientation subspace, see (3.302) and
(3.305), and use g(θ) given by the anisotropic Gaussian, (3.314). The Jacobian is obtained
from (3.311) and is written out as

∂θ

∂η
=

∂r

∂R

∣∣∣∣
R0R̂(Aγ)

∂R0R̂(Aγ)

∂η
, (3.324)

and
∂R0R̂(Aγ)

∂η
= R0

∂R̂

∂r

∣∣∣∣∣
Aγ

∂Aγ

∂η
, (3.325)

where
∂Aγ

∂η
= A

∂Reρ(Θ,Φ)

∂η
. (3.326)

Therefore

∂θ

∂η
=

 ∂r

∂R

∣∣∣∣
R0R̂(Aγ)

R0
∂R̂

∂r

∣∣∣∣∣
Aγ

A

(
∂Reρ(Θ,Φ)

∂η

)
. (3.327)

Taking the determinant gives

det
∂θ

∂η
= detΓ detA det

∂Reρ(Θ,Φ)

∂η

= detΓ detA
(
R2 sinΘ

)
, (3.328)
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where

Γ ≡

 ∂r̂

∂R

∣∣∣∣
R0R̂(Aγ)

R0
∂R̂

∂r

∣∣∣∣∣
Aγ

 ,

and we have used (A.2). The value of detΓ depends on the value of R0, which is not frame
invariant. At R0 = I, detΓ = 1, otherwise it differs from 1. Considering the analysis of
individual grains, we can always rotate the fixed lattice configuration κ to make R0 = I.
This is fine, but should be used with caution, as the definitions for H also change with this
procedure.

The integration region in (3.323) is over the reference orientation subspace γ′ and domain
of wavelength spread, written as

γ′ × λ = (∆R×∆Θ×∆Φ)×∆λ,

where for the unit ball of γ′, ∆R = [0, 1], ∆Θ = [0, π], ∆Φ = [0, 2π], and for the wavelength
we take ∆λ = λ̄ + [−2σλ, 2σλ], see (3.296). This integration region is discretized following
4-dimensional Gaussian quadrature. After fitting the grain averaged quantities H0,x0 using
the methods of §3.4.2.1, the intragranular optimization occurs with the 9 free parameters
R0,A. The residuals for the least squares optimization are formed from (3.300) and (3.301).
To dull the influence of scalar factors in the integrated pixel intensity in (3.323), we modify
the residuals to only compare peak intensities normalized to the maximum intensity in the
peak. This has the effect of modifying the model parameters R0,A in a fashion to match
the intensity profile curvature over the pixels, which is what we are after anyway. We used
N = 10 diffraction peaks in (3.301); more peaks became computationally prohibitive with
only modest changes in the final optimal estimates for R0,A.

In the next section, we present simulation results of the forward model with a range of
quadrature points along each dimension, to ascertain the amount of discretization necessary
to sufficiently model smeared diffraction peaks. We also show results of the forward modeling
for tracking the evolving intragranular misorientation.

Forward simulation results In this section we present results of the forward modeling for
producing simulated diffraction peaks. The results from increasing the number of quadrature
points are given in Figure 3.35. The number of quadrature point selected for the integration
in Equation (3.323) influences the speed of the computation and the accuracy of the simulated
peak. Qualitative examination of Figure 3.35 suggested that 12 point quadrature along each
of the integration domain variables R,Θ,Φ, λ in (3.323) gave acceptable smoothness and
coverage of the forward modeled intensity, with reasonable computation cost.

Next we show the results of different reflections from the same grain, in Figures 3.36-
3.41. These peaks were simultaneously used in the forward model. These figures show raw
intensity data for different reflection types in the crystal alongside the forward model intensity
distributions after the parameter refinement. Also note that the forward model qualitatively
captures the geometric distortions of the reciprocal vector to pixel map in Figure 3.39.
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(a) Raw XRD data (b) 5 point quadrature (c) 7 point quadrature

(d) 9 point quadrature (e) 12 point quadrature (f) 16 point quadrature

(g) 20 point quadrature

Figure 3.35: Comparison of predicted and simulated normalized intensity as a function of
the quadrature over the domain γ′ × λ. The simulated intensities are obtained according to
(3.322) and (3.323).
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(a) Raw XRD intensity data (b) Simulated intensity data

Figure 3.36: Comparison of predicted and simulated normalized intensity, hkl = 1, -1, 0.
Forward modeling from (3.323).

(a) Raw XRD intensity data (b) Simulated intensity data

Figure 3.37: Comparison of predicted and simulated normalized intensity, hkl = 0, 0, -2.
Forward modeling from (3.323).
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(a) Raw XRD intensity data (b) Simulated intensity data

Figure 3.38: Comparison of predicted and simulated normalized intensity, hkl = -1, 0, 1.
Forward modeling from (3.323).

(a) Raw XRD intensity data (b) Simulated intensity data

Figure 3.39: Comparison of predicted and simulated normalized intensity, hkl = 0, 1, -
1.Forward modeling from (3.323).
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(a) Raw XRD intensity data (b) Simulated intensity data

Figure 3.40: Comparison of predicted and simulated normalized intensity, hkl = -1, 1, -1.
Forward modeling from (3.323).

(a) Raw XRD intensity data (b) Simulated intensity data

Figure 3.41: Comparison of predicted and simulated normalized intensity, hkl = 1, 0, 1.
Forward modeling from (3.323).
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Next we consider the uncertainty prediction from the forward model. There are more
residual entries into the objective function than the grain averaged approach (as the residual
is formed on pixel intensities instead of a single pixel tuple). Therefore it seems reasonable
to expect the precision uncertainty to fall off for the forward model with respect to the
grain averaged approach. This is shown in Figure 3.42, where the uncertainty in a rotation
component r1 from the forward model fit based on 10, 20, and 30 reflections is plotted against
the grain averaged fit. The uncertainty from the grain averaged fit is computed from using
all available reflections. There is about an order of magnitude increase in the estimated
precision from the method if all reflections are incorporated into the forward model.

Figure 3.42: Comparison of the uncertainty in R0 for the forward model vs. the grain
averaged fitting. The increase in the size of the residual leads to an increase in the stated
precision of measurement.

Thus far we have shown the forward model method to be qualitatively interesting in
that we have the flexibility to capture anisotropic broadening in the diffraction peaks based
on the coarse detector. We investigated the influence of the resolution of the integration
required to produce the forward model, arriving at a compromise between smooth intensity
distributions with acceptable computational cost. Figures 3.36-3.41 show promise for the
approach, in comparison with the grain averaged approach. We now examine potential
informative uses for the modeling technique.

Intragranular misorientation We have shown the capability to capture the diffraction
intensities given model parameters in the form of the symmetric matrix A, which is con-
structed to respect invariance under change of frame. Therefore A represents an efficient
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measure of the amount of spatial inhomogeneity in the crystal, or an indication of the pro-
jection πH of Figure 3.12.

Since the initial state of the crystal is known from the initial measurements, Figure 3.34,
spatial inhomogeneity in the lattice deformation must arise due to gradients in the plastic
flow. That plastic deformation is present is evident based on the macroscopic stress strain
curve, Figure 3.31, since we are clearly out of the elastic region in the stress-strain curve.
The two phenomena (development of spatial inhomogeneity, plastic flow) are therefore clearly
correlated in the experimental data.

In Figure 3.43 is shown the familiar schematic illustration we have used previously in
Figure 2.6, generalized to demonstrate spatial inhomogeneity. In this figure the fixed refer-
ence configuration is shown, with its implant in the material reference configuration at two
different material points X(1),X(2). These points experience different plastic deformations
K(X(1)),K(X(2)), and hence the lattice deformations H(X(1)),H(X(2)) in the current state
differ spatially. The relative lattice deformation taking the lattice from one material location
with lattice deformationH1 = H(X1) to anotherH2 = H(X2) is given by ∆HH1 = H2 =⇒

∆H = H1(H2)
−1. (3.329)

This transformation is depicted in the lower right of Figure 3.43. Considering only spatial in-
homogeneity in the orientation factor, from the polar decomposition we have U1 = U2 =⇒

∆H ≈ R1U1U2)
−1(R2)

−1 = R1(R2)
−1. (3.330)

Therefore ∆H defines the misorientation tensor between orientations,

Ω = R1(R2)
−1, (3.331)

with Ω ∈ SO(3,R). We can define the misorientation axis, ω, using the projection of
SO(3,R) → R3 given by the angle-axis map. Therefore ω(Ω) is the misorientation axis of
the spatial inhomogeneity as shown in the lower right of Figure 3.43.

Now we relate the microstructural ω to the X-ray diffraction quantity A. The eigen-
vectors of A represent the directions of largest spatial misorientation. Therefore the largest
eigenvector and eigenvalue of A represent the dominant directions of spatial inhomogeneity
and can be used to compute ω. We now analyze the continuous load scan data with this
line of analysis.

Application to continuous load The misorientation axes ω corresponding to the eigen-
vectors of the largest eigenvalues of A can be plotted in various projections into the unit
cell. The eigenvectors of A are frame invariant, so to project onto the unit cell we need to
use the bulk orientation of the grain, R0 in order to project onto the unit cell. For example,
let u1 be the maximum eigenvector of A. Then we compute

R(1) = R0Au1 (3.332)
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and
R(2) = R0A(−u1). (3.333)

We then compute the misorientation

ω = ω̂(R(1)(R(2))−1) (3.334)

by evaluating the angle axis representation of R(1)(R(2))−1. Next, projection of ω on the
crystal basis vectors L1,L2,L3 is accomplished by

ω = (ω ·R−T
0 L̂

i
)R0L̂i, (3.335)

where L̂i is the unit vector associated with the lattice vector Li, and L̂
i
is the unit vector

associated with the reciprocal lattice vector Li, see (A.4). With the decomposition (3.335)
we can visualize the evolution of ω on various views of the crystal unit cell. For example
taking L1 in the basal plane and L3 along the c-axis gives a view of the misorientation axis
through the side of the unit cell. Equivalently, we can resolve everything on the image of
the orthonormal basis e1, e2, e3 ∈ κ which is mapped to the physical configuration by R0,
giving

ω = (ω ·R−T
0 ei)R0ei. (3.336)

The orthonormal construction in (3.336) avoids the geometric complexity of the reciprocal
unit basis in (3.335), and is depicted in Figure 3.44. The microstructural significance of
this analysis of spatial inhomogeneity, the intragranular misorientation should be a trailing
indicator of plastic deformation. Consider Figure 3.45, which shows a cartoon picture of
lattice reorientation due to single slip, (Yang and Lee, 1993). If the stress field is inhomoge-
neous, then regions of crystal experience different amounts of slip, hence different amounts of
reorientation in the same grain, see Figure 3.46. Therefore there is a spatial inhomogeneity
in the lattice deformation, and the projection of this spatial inhomogeneity into the orienta-
tion subspace of H-space gives rise to the misorientation ω. This logic supports the notion
that ω represents a trailing indicator of plastic deformation.

To see this, according to crystal plasticity theory, plastic deformation is restricted to the
slip systems of the material. Therefore each slip system sα⊗nα defines a likely candidate for
the misorientation axis, via ω ‖ sα×nα where ‖ denotes the parallel relation. Comparing to
the results Figure 3.52, the misorientation axes cluster at the c-axis. This is consistent with
a history of prismatic slip.

We now examine the projections of the several hundred grains which were forward mod-
eled for each step of the test. In the following figures, there are several small images, which
represent the load steps where images were taken. See Figure 3.32 for a plot of the far field
stress at each load step. In Figure 3.54, the projection is on the image of the lab frame basis
e1, e3. This represents a view of the misorientation development from the lab frame based e2
direction, the loading direction. Due to symmetry, for a given misorientation ω̂ the opposite
sign misorientation −ω̂ was also added to the figure. The behavior is for the misorientation
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Figure 3.43: Illustration of the misorientation vector ω introduced by spatial inhomogeneity
in the plastic deformation, hence lattice deformation. This figure was initially introduced in
Figure 2.6. X(1),(2) denote material position vectors in the material reference configuration,
which are nearby in the physical configuration. The intragranular function A introduced in
the present section represents the projection of the spatial inhomogeneity in this figure into
the orientation subspace of H-space.

axes to fall to an equatorial position. Next we look at resolving the misorientations on intrin-
sic crystal bases. In Figure 3.47 is a schematic of the three prismatic and basal slip systems
in the HCP unit cell. There are three prismatic systems s(i)⊗n(i), i = 1, 2, 3 and three basal
systems i = 4, 5, 6. The slip plane normals n are denoted in red, the slip directions s in
blue. The misorientation axis ω suggested from the action of these slips is indicated by the
dashed black line, see Figure 3.46 for this motivation. Therefore a history of heterogeneous
prismatic slip is expected to have ω parallel to the c-axis, while basal slip would have ω in
the equatorial plane e1, e2.

We now examine the ω extracted from several hundred grains in the titanium polycrys-
tal. We project ω on various views of the unit cell in order to visualize its evolution. In
the following figures the location of the data point indicates the projection of ω̂ onto the
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Figure 3.44: Illustration of the misorientation vector ω introduced by spatial inhomogeneity
in the plastic deformation, resolved on the crystal basis.

visualization basis. The size of the data point indicates the magnitude of misorientation,
proportional to ‖ω‖. The colormap can be ignored. In Figure 3.48 we see the projection of
ω̂ onto the R0e1,R0e3 basis for each of the 18 load steps. This is the visualization projec-
tion for one of the basal systems, according to Figure 3.46. Initially the misorientations are
random, but as plastic deformation accumulates and the grains break up, the misorientation
axes begin to show a detectable anisotropy. It appears that the tendency is for the misorien-
tation axes to cluster around the c-axis. This is consistent with a history of prismatic slip.
To verify this, in Figure 3.49, Figure 3.50, and Figure 3.51are visualization projections for
the three prismatic systems. These figures show projections looking down from the c-axis,
and the basis vectors for obtaining the projection are R0e1,R0e2. The prismatic slip history
is again indicated, as the misorientation axes cluster at the c-axis. In Figure 3.52 we again
see the projection of ω̂ onto the basal visualization, with basis R0e1,R0e3 in greater reso-
lution. The loadsteps 1,6,12,15 were selected as representative. In Figure 3.53 are the same
load steps with the prismatic visualization. These two figures are added for better resolution
in comparison with the previous coarse figures. The clustering of the misorientation axes
ω around the c-axis reflects a history of prismatic slip activity. Finally in Figure 3.54 the
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Figure 3.45: Schematic illustration of the reorientation of the lattice under single slip.

misorientation data is plotted on the external (fixed) lab frame e1, e3. The evolution of the
misorientation is to fall on the equatorial plane. The evolution based on the intrinsic unit
cell orientation is apparently successful, so that this equatorial evolution is probably more
an effect of anisotropic texture in the polycrystal than a property of the boundary value
problem.

To get a better visualization of the evolution of ω, Figure 3.55 represents the same data as
in Figure 3.52 but plotted on a spherical polar coordinate chart. This is natural because the
unit vectors on S2 naturally occupy a two dimensional manifold, by the parametrization of
Equation (A.1). The coordinates β, α from this parametrization are plotted on the horizontal
and vertical axes respectively. The north pole in the parametrization used for Figure 3.52 is
in the basal plane, so the c axis is at β = π/2. The clustering at the c-axis is clearly depicted
in the figure. Finally, in Figure 3.56 the projections of the misorientation on the fixed lab
frame basis is similarly plotted in spherical polar coordinates. The poles are defined at ±e2.
The evolution of the misorientation to the equatorial plane at β = π/2 is more evident than
in Figure 3.54.
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Figure 3.46: Schematic illus-traction of differences in the local slip causing spatial misorien-
tation in the lattice. In the figure the resulting misorientation axis ω is coming out of the
page; it is orthogonal to the slip system.
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Figure 3.47: Schematic view of HCP unit cell with several slip systems indicated. The
misorientation axis ω suggested from the action of these slips, according to Figure 3.46 is
indicated by the dashed black line. Therefore prismatic slip is expected to have ω parallel
to the c-axis and basal slip any thing in the equatorial plane.
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(a) loadstep 1 (b) loadstep 2 (c) loadstep 3 (d) loadstep 4 (e) loadstep 5

(f) loadstep 6 (g) loadstep 7 (h) loadstep 8 (i) loadstep 9 (j) loadstep 10

(k) loadstep 11 (l) loadstep 12 (m) loadstep 13 (n) loadstep 14 (o) loadstep 15

(p) loadstep 16 (q) loadstep 17 (r) loadstep 18

Figure 3.48: ω̂ axes projected on to a basal visualization direction. Location of the data
points indicates the projection of ω̂ on the selected basis. The size of the data points indicates
the magnitude of misorientation, ‖ω‖. The misorientation axes cluster around the c-axis of
the unit cell, indicating a history of prismatic slip.
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(a) loadstep 1 (b) loadstep 2 (c) loadstep 3 (d) loadstep 4 (e) loadstep 5

(f) loadstep 6 (g) loadstep 7 (h) loadstep 8 (i) loadstep 9 (j) loadstep 10

(k) loadstep 11 (l) loadstep 12 (m) loadstep 13 (n) loadstep 14 (o) loadstep 15

(p) loadstep 16 (q) loadstep 17 (r) loadstep 18

Figure 3.49: ω̂ axes projected on to a basal visualization direction. Location of the data
points indicates the projection of ω̂ on the selected basis. The size of the data points indicates
the magnitude of misorientation, ‖ω‖. The misorientation axes cluster around the c-axis of
the unit cell, indicating a history of prismatic slip.
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(a) loadstep 1 (b) loadstep 2 (c) loadstep 3 (d) loadstep 4 (e) loadstep 5

(f) loadstep 6 (g) loadstep 7 (h) loadstep 8 (i) loadstep 9 (j) loadstep 10

(k) loadstep 11 (l) loadstep 12 (m) loadstep 13 (n) loadstep 14 (o) loadstep 15

(p) loadstep 16 (q) loadstep 17 (r) loadstep 18

Figure 3.50: ω̂ axes projected on to a basal visualization direction. Location of the data
points indicates the projection of ω̂ on the selected basis. The size of the data points indicates
the magnitude of misorientation, ‖ω‖. The misorientation axes cluster around the c-axis of
the unit cell, indicating a history of prismatic slip.
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(a) loadstep 1 (b) loadstep 2 (c) loadstep 3 (d) loadstep 4 (e) loadstep 5

(f) loadstep 6 (g) loadstep 7 (h) loadstep 8 (i) loadstep 9 (j) loadstep 10

(k) loadstep 11 (l) loadstep 12 (m) loadstep 13 (n) loadstep 14 (o) loadstep 15

(p) loadstep 16 (q) loadstep 17 (r) loadstep 18

Figure 3.51: ω̂ axes projected on to a prismatic visualization direction. Location of the
data points indicates the projection of ω̂ on the selected basis. The size of the data points
indicates the magnitude of misorientation, ‖ω‖. The misorientation axes cluster around the
c-axis of the unit cell, indicating a history of prismatic slip.
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(a) loadstep 1 (b) loadstep 6

(c) loadstep 12 (d) loadstep 15

Figure 3.52: ω̂ axes projected on to a basal visualization direction. Location of the data
points indicates the projection of ω̂ on the selected basis. The size of the data points indicates
the magnitude of misorientation, ‖ω‖. The misorientation axes cluster around the c-axis of
the unit cell, indicating a history of prismatic slip.
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(a) loadstep 1 (b) loadstep 6

(c) loadstep 12 (d) loadstep 15

Figure 3.53: ω̂ axes projected on to a prismatic visualization direction. Location of the
data points indicates the projection of ω̂ on the selected basis. The size of the data points
indicates the magnitude of misorientation, ‖ω‖. The misorientation axes cluster around the
c-axis of the unit cell, indicating a history of prismatic slip.
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(a) loadstep 1 (b) loadstep 2 (c) loadstep 3 (d) loadstep 4 (e) loadstep 5

(f) loadstep 6 (g) loadstep 7 (h) loadstep 8 (i) loadstep 9 (j) loadstep 10

(k) loadstep 11 (l) loadstep 12 (m) loadstep 13 (n) loadstep 14 (o) loadstep 15

(p) loadstep 16 (q) loadstep 17 (r) loadstep 18

Figure 3.54: ω̂ axes projected on to the fixed lab frame. The view is looking down on the
polycrystal from the load axis, e2. The size of the data points indicates the magnitude of
misorientation, ‖ω‖.
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(a) loadstep 1 (b) loadstep 2 (c) loadstep 3 (d) loadstep 4 (e) loadstep 5

(f) loadstep 6 (g) loadstep 7 (h) loadstep 8 (i) loadstep 9 (j) loadstep 10

(k) loadstep 11 (l) loadstep 12 (m) loadstep 13 (n) loadstep 14 (o) loadstep 15

(p) loadstep 16 (q) loadstep 17 (r) loadstep 18

Figure 3.55: ω̂ axes visualized on spherical polar coordinates. The north pole β = 0 is in
the basal plane. Location of the data points indicates the α, β coordinates of the unit vector
according to (A.1). The size of the data points indicates the magnitude of misorientation,
‖ω‖. The misorientation axes cluster around the c-axis, indicating a history of prismatic
slip.
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(a) loadstep 1 (b) loadstep 2 (c) loadstep 3 (d) loadstep 4 (e) loadstep 5

(f) loadstep 6 (g) loadstep 7 (h) loadstep 8 (i) loadstep 9 (j) loadstep 10

(k) loadstep 11 (l) loadstep 12 (m) loadstep 13 (n) loadstep 14 (o) loadstep 15

(p) loadstep 16 (q) loadstep 17 (r) loadstep 18

Figure 3.56: ω̂ axes visualized on spherical polar coordinates based on the fixed lab frame,
with north pole e2. Location of the data points indicates the α, β coordinates of the unit vec-
tor according to (A.1). The size of the data points indicates the magnitude of misorientation,
‖ω‖. The misorientation axes cluster at the equator at β = π/2.
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3.4.2.2.8 Discussion We now discuss a few aspects from the results of the forward
simulation technique. The intragranular misorientation direction was able to be obtained
using the standard tools of the far field detector. Figures 3.48 - Figure 3.56 indicate that this
modeling leads to the reporting of anisotropic intragranular texture development in single
grains. This anisotropy was derived from a model which does not impose the effect of slip
systems a priori, as done in Barabash et al. (2002). With assumptions about the relationship
between spatial inhomogeneity in the amount of slip, we found prismatic slip to be indicated
in the data. In §3.5 the activity of prismatic systems is suggested from a complementary
computation based on resolved shear stresses. Therefore this modeling approach has been
successful in adding to the possible data one may obtain from the far field high energy X-ray
techniques.

Now we give observations of areas the technique could be improved. The last three images
in the full frames of Figures 3.48 - Figure 3.56 tend to lose a clear indication of anisotropy
in the the intragranular texture. Comparing this to Figure 3.31 indicates that the ability of
the technique to accurately capture intragranular misorientation reaches a peak at about 2%
strain. Note that isotropic broadening is monotonic as indicated by the increasing size of the
data points in the figures, but the clear indication of anisotropy begins to get lost. This may
be for several reasons. First, as plastic deformation commences, the local diffraction peaks
can become multimodal, as the grains divide into discrete subdomains. The formulation of
the residuals in (3.300), (3.301) or the overall choice of a gradient solution method for the
objective function may not be optimal. One particular peak may get fit preferentially in the
algorithm due to a the gradient algorithm being unable to get to a global optimum intensity
distribution. A global optimization technique may be useful to investigate in further studies.
Secondly, the pixels of the detector can get easily saturated without careful control of the
intensity. At the later load steps, many local diffraction peaks are completely saturated,
therefore all details of the anisotropic nature of the local peaks is lost. It is difficult for
the objective function used here to retain anisotropy in the intragranular estimate if all the
reflections saturate their pixels.

The latter point brings up another suggested improvement to the experimental technique.
In Figure 3.34 we noted the changing brightness of the diffraction images, due to true changes
in the experimental configuration of the incident beam. These changes in the intensity
alter the numerical values of A, at least isotropically. The intensity recorded at each load
increment was not available in the data; therefore in future tests independent measurements
of the incident intensity would be useful for investigation of the forward model.

As noted previously, the computational cost of the approach is expensive relative to
the grain averaged modeling in §3.4.2.1. The coding used python’s multiprocessing module
to take advantage of multiple cores. On a quad-core processor, a single forward modeling
least squares refinement can take 20 minutes with 12 quadrature points per dimension in
(3.323). This compares with the grain averaged refinement time of 30 seconds. Algorithmic
optimizations have not been deeply investigated. Addressing this can surely reduce the
computational cost greatly, although using a global optimization technique mentioned earlier



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 279

in this discussion would more likely add to the cost. This underscores that this modeling
approach is not meant for rapid processing of the data, but for the extra mining of information
contained in the fundamental experiments at the synchrotron.

3.4.2.2.9 Summary. The results of the forward modeling method described in this
paper are positive. We developed a model to predict the integrated energy at individual
pixels on the detector which was sensitive to lattice deformation and microstructural effects.
We reduced this forward modeling problem to the determination of a volume distribution
g(H) which represents the projection of spatial inhomogeneity πH into H-space. We applied
the model to X-ray data from a continuously loaded polycrystalline titanium alloy. In this
application we considered a reduced degree of freedom expression for the volume distribution
g(H), over the orientation subspaceH(θ) = R(θ)U. We investigated the effect of the number
of quadrature points taken in the forward model, and demonstrated the ability to capture
estimates of intragranular misorientation. This misorientation was related to intrinsic aspects
of the single crystal: that prismatic slip is the dominant plastic deformation mechanism. This
outcome is notable because we did not require a separate experimental methodology, such as
the independent use of high resolution detectors to obtain this information. These additional
measurements would ideally be used to validate the far-field method of analysis. For the
time being, however, the standard far field technique appears to suffice.

Overall, this method exhibits greater data utilization than the approach taken in §3.4.2.1,
at the cost of increased computational time. However, this is not much of a detractor, since
synchrotron experiments such as the one generating this data may be mined for years after
the initial experiment. This modeling technique enables researchers to have one more tool
of analysis at their disposal, increasing the profitability of executing such experiments.

3.4.3 Conclusion

This concludes the discussion of methods for the estimation of direct kinematic parameters
from high energy X-ray diffraction experiments. The sought after parameters described in
this section include the lattice deformation H and the intragranular texture deformation
A. The term kinematic is used in recognition of the fact that these quantities are obtained
from geometric properties of the lattice of the crystal, and are independent of constitutive
relations.

We gave a general background overview of weighted least squares based parameter esti-
mation, including uncertainty analysis. We then described two novel modeling approaches
for X-ray diffraction data.

The grain averaged approach was an efficient method for incorporating uncertainty in the
location of a diffraction peak to uncertainty in the overall lattice deformation estimate H.
The uncertainty in the strain of 5 − 20% is greater than uncertainties from a method such
as a standard resistance strain gauge, which has a relative uncertainty of < 5%. Being able
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to quantify these uncertainties in the lattice strain estimates is crucially important when
considering constitutive parameter determination.

The forward modeling approach allowed the extraction of intragranular texture infor-
mation from the single crystal. Based on a reduced degree-of-freedom assumption for the
texture function, diffraction peaks are forward modeled. Then these simulated intensity dis-
tributions can be directly compared to pixel intensity data on the detector. This forms the
basis for a least squares based estimation of a projection of the spatial distribution of lattice
deformation into a subspace of GL(3,R) × R (the volume distribution g(H)). This projec-
tion, essentially an indication of spatial inhomogeneity, was shown to exhibit microstructural
information such as the history of plastic deformation according to crystal plasticity theory.
In application to an experiment, it revealed a history of prismatic slip to be indicated in a
continuously loaded titanium polycrystal. Additionally, this projection was constructed to
be frame invariant, so that it can serve as a constitutive variable in potential granular based
models of polycrystals.

In the next section, the kinematic data obtained by the methods described here is used
in conjunction with the model of elastic-plastic deformation developed in Chapter 2 to esti-
mate single crystal constitutive parameters from a polycrystal. Most literature publications
have used the high energy technique for discovery-type research. Therefore the ability of the
method to obtain equally important constitutive information has not been widely demon-
strated. The capability to use these X-ray techniques to extract constitutive parameters
would be a boon to studies of complicated materials where single crystal constitutive pa-
rameters are poorly quantified. The fact that this method can be applied to a polycrystal
only increases the potential payoff of this line of experimentation.
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3.5 Constitutive parameter extraction

Experiments play two primary roles in research. The first role is of providing fundamen-
tal discoveries of material behavior. The second role is closing the gap between theoretical
models and applications by measuring constitutive functions requested by the theory. The
determination of constitutive functions is particularly crucial for phenomenological contin-
uum mechanics, where any underlying physics present at, say, the discrete atomic level is
smeared out and replaced by phenomenological continuous functions. In certain cases the
phenomenological functions can be estimated from physical models. However, generally a
phenomenological approach is most useful when the physics are poorly understood, so direct
experimentation is required in these cases.

It is unfortunate that the accepted state of affairs in the modern research community so
greatly decouples theory from experimental investigation. That is, a combined presentation
of theory with experimental validation is exceedingly rare to find in the modern literature.
As noted several times in this thesis, continuum plasticity in particular is plagued with a
lack of experimental techniques which can measure the constitutive parameters which are
requested by the theory. The X-ray diffraction measurements in the present study suggest a
possible way forward to providing constitutive information and a validation mechanism for
certain theories of plasticity.

In this section we will assess the ability of synchrotron X-ray experiments to extract
single crystal properties from polycrystalline materials. This was noted as a case of interest
in the introduction to this chapter, since polycrystalline materials are more readily available
than large single crystals for many alloys. The methods for this end goal are relatively wide
open for investigation. Without a standard methodology in place, we discuss two proposed
approaches.

First, we take the point of view that each grain in the polycrystal represents an in-
dependent measurement of the single crystal material properties. We track the evolving
deformation in each grain throughout the loading process, and use the evolving state of lat-
tice deformation to deduce plastic properties. For example, the concept of a yield surface can
be appealed to to suppose that the strain energy of the grain remains roughly constant over
a strain increment. Then the state of strain or stress in the grain represents an experimental
observation of a point on the yield surface. In a second method, we use the X-ray diffraction
data to generate a simulated microstructure using a grain seeding algorithm similar to that
in §2.4.2.1.1. With this simulated microstructure, we can use a numerical method to predict
the deformations at each macroscopic load-step. Then the numerical results can be used to
refine single crystal material parameters to match the experimental estimates.

We begin by trying to extract the yield function parameters from the continuously loaded
titanium alloy, initially described in §3.4.2.2.6.
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3.5.1 Phenomenological constitutive analysis of continuous load
scan

In this section we consider the extraction of constitutive parameters from the continuous load
scan experiment presented in §3.4.2.2.6. To briefly summarize, this experiment consisted of
the in situ measurement of lattice deformation during an uniaxial tension test. Total axial
material strain and axial stress were measured by the external load frame. The total strain
applied to the material was 2̃%. HEDM was applied to the material, and approximately 700
grains were present in the diffraction volume. The lattice strains, H, in each of the grains
were tracked throughout the deformation using X-ray diffraction scans, 18 full diffraction
scans of the polycrystal were taken during the straining process. The grain averaged fitting
techniques of §3.4.2.1 were used to obtain this estimate for H.

The task of this section is to use the kinematic data, H, in combination with the phe-
nomenological plasticity theory developed in Chapter 2 to extract constitutive parameters.
The continuous loading experiment was not executed with this end result in mind, however
the attempt is worthwhile to describe.

The uncertainty associated with the estimates for H was presented in §3.4.2.1, with
precision uncertainty on strain between 5− 20%. It is not clear if this level of precision will
be acceptable in yielding meaningful constitutive parameters. However obtaining even order
of magnitude estimates for the parameters is a useful outcome. For the phenomenological
theory of plasticity in particular, the lack of numerical constitutive parameters is glaring
(Papadopoulos and Lu, 2001). In any case this attempt represents a first trial at extracting
phenomenological parameters from polycrystalline bulk materials, using the high energy X-
ray technique; so future experiments can be designed with the findings of this section in
mind.

3.5.1.1 Overview of method

The methodology used in this section is to track the lattice deformations in each of the
individual single crystal grains throughout the deformation. Based on criteria from the
macroscopic change in deformation measured from the load frame, these lattice deforma-
tions may be assigned to be either representative of yielding or not. The list of all such
yielding grains constitutes the input data for a least squares refinement to determine the
yield function. We now describe this in more specific details. The concept of ‘the set of
grains determined to be yielding’ is cumbersome to refer to so we formulate the problem in
mathematical terms.

For the load step j, denote the data of this jth scan by

F j = {H(i) : i = 1, 2, ..., Ngrains}j,

where Ngrains is the number of grains in the diffraction volume. The dataset of all lattice
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deformations in each grain, denoted D, is written as

D = {F j : j = 1, 2, ..., Nmeas}, (3.337)

where Nmeas is the number of measurement scans taken during the loading. To be clear, in
the continuous load scan, we had Ngrains ≈ 700 and Nmeas = 18. It is possible that grains
may not be found for certain load steps. Therefore to simplify the data analysis we only use
grains which were tracked throughout the entire deformation. Enumerate the set of observed
grains. The index into the full grain list is given by

I =
Nmeas⋂
j=1

{i : H(i) ∈ F j}. (3.338)

Using this the final data set is expressed by

D = {{H(i) : i ∈ I}j : j = 1, 2, ..., Nmeas}. (3.339)

Next, assume that we have the single crystal elastic moduli, C. Then we can obtain
elastic stress in the ith grain from the constitutive equation

S(i) = C[E(i)], (3.340)

where E(i) = 1/2(HT
(i)H(i) − I), (no sum on i). S(i) is the symmetric Piola Kirchoff stress for

the ith grain. For a non hardening material we must have

y(S;Θ) = 0. (3.341)

where y : Rn → R+ is the yield function, n is the number of integrity basis elements in the
polynomial constitutive function, and Θ represent the model parameters, see Chapter 2 and
§3.4. For example, the yield function (2.190) has Θ = byij, c

y
i .

Applied to experimental data, (3.341) must hold, within experimental error, when the
ith grain is in a state of yield. Let

Y = {H ∈
⋂

D : H =⇒ yield} (3.342)

be the set of grains at yield from the full data list. We will describe how we identify these
yield points shortly. Then, using the data in Y refine the material parameters Θ in y(S;Θ)
to satisfy (3.341). In terms of least squares objective functions, §3.4.1, we have

Φ(Θ) =
N∑
i

[y(SŶ (i))]
2, (3.343)

where Ŷ : N → Y is the enumeration map for Y .
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Yield point identification The identification of yield points to construct Y is an impor-
tant matter do discuss. The experimental observation of yield is challenging to investigate
experimentally. The sheet metal community is a good example of pursuing yield function de-
termination. In these experiments, yield points are found by cutting elements from the sheet
metal and testing them in uniaxial extension. The traditionally defined offset yield stress is
then recorded as the yield stress in that direction in the plane sheet. Here, we cannot use
anything like this, since we are looking for single crystal data from polycrystalline behavior.
We cannot, for example, use the macroscopic yield point of the polycrystal to inform the
local single crystal behavior. To identify yield points, we use the basic phenomenological
observation as exploited in §2.2.2: that during plastic flow the elastic state stays roughly the
same while the total material deforms. There may be slight lattice reorientation, but within
some tolerance the elastic stress or strain stays on a constant yield surface in stress or strain
space.

With this in mind, we looked at points where the strain energy at sequential load steps
was roughly equivalent, to within a preassigned tolerance. That is

|W i
(j) −W i+1

(j) | < tol, (3.344)

where W i
(j) = (1/2)Si

(j) · Ei
(j) is the strain energy at the ith load step for the jth grain and

tol > 0 is the tolerance. Monitoring all points in the polycrystal where this was the case
defined the input data, Y (3.342), for the objective function (3.343).

There are a few final remarks regarding the yield function. In order for a non zero stress
to satisfy the functional definition (3.341), the yield function is written as

y(S;Θ, ymax) = y′(S;Θ)− ymax, (3.345)

where ymax ∈ R+. In the eventual application of the least squares optimization, we follow the
methodology in §2.4.1.2 by scaling the yield offset parameter ymax to approximate strengths
in uniaxial tension. Therefore to the objective function (3.343) we add the residual equation

ri = ymax −
1

3
(Ty)

2, (3.346)

where Ty is obtained from the macroscopic stress strain curve, and is a constant. This
parameter scaling is motivated by J2 theory, as described in §2.4.1.2. The objective function
is written

Φ(Θ, ymax) =
N∑
i

[Viy(SŶ (i);Θ, ymax)]
2 + w[ymax −

1

3
(Ty)

2]2, (3.347)

where Vi is the volume of the grain, and w is a weight factor we can adjust to enforce the
scaling property. The volume weighting is added to favor contributions to the residual from
larger grains, as previous analysis found that on average smaller grains tend to be more prone
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to scatter. Upon execution of the least squares algorithm to obtain ∇Φ = 0, the material
parameters Θ, ymax are obtained, see Equation (3.244).

To take the analysis a step further, in the theory presented in Chapter 2, the constitutive
parameters for the yield function are also of relevance to the flow function,

K−1K̇ = −λ∂y
∂S

+Ω. (3.348)

So that

sym K−1K̇ ∼=
∂y

∂S
, (3.349)

since Ω ∈ skw. Therefore, the parameters obtained from the yield function assignment
should compared favorably to measuring some of the parameters based on (3.349). It is
interesting to see how compatible the parameter estimates from the yield function alone,
using (3.347) will be compared to similar estimates based on the flow function.

The local plastic flow cannot be directly measured; however total material deformation
can in principle be measured. In the current experiment, we do not have an ideal way to
estimate this, however we can make some assumptions and see where they lead. During the
continuous load scan, the total material deformation was recorded with a bonded resistance
strain gage fixed to the material. In the next paragraph we show how we can use this to
obtain a macroscopic estimate of the local material deformation, F. Since we have grain
level measurements of H, we can then obtain experimental estimates of K from the relation

K = F−1H. (3.350)

We now work out how we accomplish this.8

Flow function estimate. In order to estimate yield parameters based on (3.348),(3.349),
we require a measurement of the direct evolution of K = F−1H, where H is given by the X-
ray diffraction experiment. From the strain gage bonded to the macroscopic polycrystalline
sample, we can obtain the axial material extension and stress. A reasonable deduction is
that we assume that the material deformation is given by the symmetric stretching gradient

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (3.351)

We might suppose that for plastic loading we could write

F = λe2 ⊗ e2 +
1√
λ
e1 ⊗ e1 +

1√
λ
e3 ⊗ e3, (3.352)

8As noted several times, full field digital image correlation would be better served for the task of deter-
mining local measurements of F at the same length scale as the X-ray diffraction. The following is clearly
not the ideal methodology for this task, but it is what we have to work with.
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and use λ directly the axial material strain measurement. However, due to the elastic volume
change this is not strictly correct. But since we have macroscopic plasticity, Figure 3.31, we
can also not use purely elastic, Hookean kinematics to obtain the total deformation from the
axial stress.

The solution is to first recognize that the macroscopic polycrystalline body can be con-
sidered isotropic, with two elastic parameters E, ν the modulus and Poisson ratio. Then,
note the decomposition

F = FpFe. (3.353)

This multiplicative decomposition has a much different meaning than the decomposition
in §2.2.1. It conveys the classical decomposition, where Fe is the strain resulting from
unloading, and Fp remains after the load is removed. In (3.353) Fe is therefore the component
of the deformation gradient due to elastic effects, e.g. from the strain obtained from Hooke’s
law,

εeij =
1

2µ
σij −

λ

2µ(2µ+ 3λ)
σkkδij, (3.354)

where λ, µ are the Lame coefficients and σ = diag(0, σ22, 0), with σ22 reported from the load
frame. Then basic kinematics gives

Fe = Ue =
√
Ce =

√
2εe + I, (3.355)

with Ue the symmetric part of the polar decomposition of Fe, Ce ≡ (Ue)2, and ε is the
infinitesimal elastic strain, with components given by (3.354). Since the macroscopic shear
stresses are zero, we have

F e
11 =

√
2εe11 + 1

F e
23 = 0

F e
22 =

√
2εe22 + 1

F e
13 = 0

F e
33 =

√
2εe33 + 1

F e
12 = 0

, (3.356)

with εeij given by (3.354) with σ = diag(0, σ22, 0). Next, Fp is restricted by imposing the

isochoric plastic flow condition, J̇Fp = 0 for plastic deformation, where JFp = detFp. The
plastic deformation must then be of the form

Fp = λp2e2 ⊗ e2 +
1√
λp2

(e1 ⊗ e1 + e3 ⊗ e3), (3.357)

where λp2 is the plastic axial stretch.

Summary: estimate for F. We now have enough ingredients to estimate F locally. For clarity
we summarize the procedure. Both ε22, σ22, are experimentally measured, from strain gage
and load frame. We compute the elastic strain, εe22 from applying the stress state σ =
diag(0, σ22, 0) in isotropic Hooke’s law, (3.354). The elastic axial stretch is then given from
the elastic strain by λe2 =

√
2ε̂e22(σij) + 1. Next, the total material axial stretch is obtained

from the total material strain gage measurement, giving

λ2 =
√
2e22 + 1. (3.358)
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Then the plastic stretch is obtained from using (3.357) in (3.353). With (3.358) this gives

F = FpFe =⇒ λ2 = λp2λ
e
2, (3.359)

giving the plastic stretch in terms of the elastic stretch and material stretch as λp2 = λ2/λ
e
2.

By the isochoric construction of (3.357), prescribing λp2 completely specifies Fp, hence F is
completely determined through (3.353). For example, in a similar fashion to the e2 direction,
considering the e1 direction we obtain λe1 from the isotropic Hooke’s law (3.354) and (3.358),
and use F11 = Fp

11F
e
11 to solve for F11. This analysis works due to the diagonal structure of

the matrix representations of F,Fe,Fp. In this way we can estimate F(λ,E, ν) when only
the far field stress σ22 and strain ε22 are known.

After obtaining the local estimate for F, we can then compute K with F and the local
diffraction measurement of H. Then the plastic evolution K−1K̇ is measured from one load
point to the next through

K−1K̇
j

(i) ≈ (Kj
(i))

−1(Kj
(i) −Kj−1

(i) )/∆t, (3.360)

where the indices j, j − 1 denote the estimate for K(i) from (3.350) at the j, j − 1 load step,
and where ∆t is the time interval. This is related to the yield function through (3.349), where
the difference between the right and left hand side comes from the scalar Lagrange multiplier
λ in the flow rule (3.348). The true solution of λ requires the full integration of the flow
equations, which are not feasible to solve. Furthermore the time scale between experimental
observations (≈ 3 minutes) is clearly of a different nature than would be computed in a
numerical simulation. Therefore using this technique to obtain yield function parameters
will only give an estimate of the ratios of the parameters, and not absolute numerical values.
It is still informative to compare these estimates with the direct yield function estimate.

The objective function formed to estimate the flow/yield parameters is given by

Φ(Θ) =

Ngrains∑
j

Nsteps∑
i

Vi

[{
(sym K−1K̇)i

}j

− ∂y

∂S

∣∣∣∣
Si

]2
, (3.361)

where Ngrains is the number of grains in the data set and Nsteps is the number of data points
taken during the continuous loading. We could attempt to more closely represent the flow
rule by considering

Φ(Θ, k) =

Ngrains∑
j

Nsteps∑
i

Vi

[{
(sym K−1K̇)i

}j

− k
∂y

∂S

∣∣∣∣
Si

]2
, (3.362)

and optimize overΘ, k. The motivation for (3.362) would be that for the reasonably constant
strain rate used in the test the plastic flow multiplier would be constant. However we get
no better results from this formulation since the least squares optimization only finds where
∇Φ = 0 and independently varying scalar multipliers will not affect the algorithm.
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Summary. In this introduction we have described the general methodology used to ex-
tract phenomenological constitutive parameters from high energy X-ray measurements of a
polycrystal. The parameters we are after are the material parameters in the yield function,
(3.341). We perform the parameter estimation in two ways, (1) identifying grains which ap-
pear to be in a state of plastic flow, collecting all such states of lattice strain in a large least
squares objective function, and solving for the optimal parameters Θ∗, and (2): using the
macroscopic stress and strain measurements to obtain estimates of the material deformation
F, and applying this deformation at the local level with the XRD measurements of H to
enable the computation of K. The symmetric part of the flow rule (3.348) is related to the
yield function through the S-derivatives, (3.349). These are different methods of revealing
the same material parameters so results should be related to one another for consistency.

We now attempt to apply the framework to data. We will use the continuous load
scan data described in §3.4.2.2.6, which was a titanium alloy. We must first develop the
constitutive equations for the yield function for the dihexagonal-dipyramidal point group,
characterizing this material. See Chapter 2 for other examples of constitutive function
generation according to the phenomenological theory.

3.5.1.2 Constitutive equations for titanium

In this section we develop the constitutive equations for the yield function for titanium
(HCP). Following the methodology in Green and Adkins (1970), we require the representa-
tion for a scalar valued function of a single symmetric tensor argument,

F (A) = F (QAQT), (3.363)

where Q ∈ gκ, and gκ is the symmetry group for the material. The symmetry elements in
the dihexagonal-dipyramidal group are (Green and Adkins, 1970)

I,S1,S2,C,CS1,CS2,R1,R1S1,R1S2,R2,R2S1,R2S2,R3,R3S1,R3S2,
D1,D1S1,D1S2,D2,D2S1,D2S2,D3,D3S1,D3S2

(3.364)

where S1,2 are rotations of 2π/3 about the c-axis of the unit cell, and all other rotation
elements are defined after (2.140). As in §2.3.3.1 we desire a yield function of quadratic
order in its argument, the stress or strain. This symmetric tensor argument is denoted by
A. The hexagonal structure is extremely difficult to generate constitutive functions for using
the method applied in §2.3.3.1. However for a single symmetric tensor argument, things are
more tractable; see Green and Adkins (1970, p. 24). The integrity basis for this polynomial
is

x1 = A11 + A22

x2 = A33

y1 = A11A22 − A2
12

y2 = A2
13 + A2

23,
(3.365)

with polynomial expansion

F (A) =
2∑

i=1

2∑
j=1

bijxixj +
2∑

i=1

ciyi, (3.366)
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with the symmetries bij = bji, for a total of 5 constants. Therefore Θ = b11, b12, b22, c1, c2 in
(3.341). We provide some visualizations of the yield surfaces obtained from (3.366) later in
this section. For now, we can point out some qualitative observations of the integrity basis,
motivated by information from slip planes in the HCP crystal. A few of the invariants in
(3.366) have a useful interpretation. Recall that the c-axis of the crystal is aligned with e3 in
the basis construction of (3.366). The basis element A11A22 − A2

12 represents the distortion
energy in the basal plane. Consider the two dimensional basal stress tensor

S =

[
S11 S12

S12 S22

]
. (3.367)

Then I2(S) = S11S22 − S2
12. This invariant is familiar to plasticity: the second invariant of

the stress is the distortion energy in plasticity of isotropic materials. Based on the geometry
of the unit cell, e1, e2 represent the basis for prismatic slip activity. We can therefore deduce
that prismatic slip will be largely influenced by the material parameter c1. Similarly, the
terms S13, S23 represent resolved shear stresses on the basal system. Therefore basal slip will
be largely influenced by the parameter c2. The influence of the pyramidal system will be
evident in both material parameters.

The yield function must satisfy a few additional properties besides material symmetry.
The maximum dissipation postulate requires the yield function to be convex, which is not
guaranteed by the polynomial (3.366). (Barlat et al., 2005; Soare and Barlat, 2010) and
related references constitute a segment of the literature interested in constructing convex
yield function for sheet metals. For the simple form assumed in (3.366), convexity can be
checked by computing the eigenvalues of the Hessian

Jijkl =
∂2F

∂Aij∂Akl

, (3.368)

which will be constants due to the quadratic form for (3.366). To be convex, the eigenvalues
of J must be non-negative, as required in Rockafellar (1972, Thm 4.5). The eigenvalues of
the Voigt matrix obtained from (3.368) are solved using Mathematica. They are

λ1 = −2c1 λ2 = −c1
λ3 =

1
2

(
4b11 + 2b22 + c1 −

√
16b211 + 32b212 + 8b11 (−2b22 + c1) + (−2b22 + c1)

2

)
λ4 =

1
2

(
4b11 + 2b22 + c1 +

√
16b211 + 32b212 + 8b11 (−2b22 + c1) + (−2b22 + c1)

2

)
λ5 = 2c2 λ6 = 2c2.

(3.369)

The non-negativity of the eigenvalues can be added as a constraint in the optimization
algorithm. In the application to experiment we used unconstrained optimization and were
able to obtain an acceptable convex solution.
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The yield function may also be required to satisfy other properties. An additional con-
sideration is that we’d like to have isochoric plastic flow. We now compute relations between
the parameters (3.366) which satisfy this constraint. Recall the flow rule is written as

K−1K̇ = −λ∂y
∂S

+Ω.

The plastic volumetric flow is given by tr (K−1K̇) ∼= tr ∂y/∂S. The A-derivative of the yield
function based on (3.366) in the flow rule has components

∂y

∂A11

= c1A22 + 2b11 (A11 + A22) + 2b12A33

∂y

∂A22

= c1A11 + 2b11 (A11 + A22) + 2b12A33

∂y

∂A33

= 2b12 (A11 + A22) + 2b22A33

∂y

∂A23

= 2c2A23

∂y

∂A13

= 2c2A13

∂y

∂A12

= −2c1A12.

(3.370)

Calculating the trace of ∂y/∂A gives

tr
∂y

∂A
= c1 (A11 + A22) + 4b11 (A11 + A22) + 2b22A33 + 2b12 (A11 + A22 + 2A33) . (3.371)

After some algebra we can rewrite this as

tr
∂y

∂A
= (c1 + 4b11 + 2b12) (A11 + A22 + 2A33) + (b22 − 4b11 − c1) 2A33. (3.372)

Therefore, to enforce plastic incompressibility we have the constraint equations

b22 − 4b11 − c1 = 0
c1 + 4b11 + 2b12 = 0.

(3.373)

This completes the required constitutive development. We now summarize this section.

Summary of constitutive development. The yield function y for dihexagonal-dipyramidal
symmetry is given by (3.366). The least squares objective function for the yield point iden-
tification method is given in (3.347), with S being given by the single crystal elastic moduli
along with the grain averaged strain measured from X-ray diffraction. The model parame-
ters to solve for are b11, c1, c2, with b12, b22 given by (3.373) in order to satisfy incompressible
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plastic flow. The convexity of the yield function based on the constant yield parameters is
checked after an unconstrained optimization procedure. If the final solution does not give a
convex result, the constraints λi ≥ 0 with eigenvalues λi given by (3.369) can be added and
a constrained optimization method adopted.

The same material parameters for y(S) enter into the symmetric part of the plastic flow,
Equation (3.349). Therefore, in addition to the direct yield point identification a comparative
optimization will be performed using the objective function (3.361). For this step no volume
incompressibility will be enforced, since we are attempting to directly measure the plastic
flow rate. Therefore all model parameters in the yield function (3.366) are free. As noted
previously, we cannot obtain absolute values for the yield constants using the plastic flow
relation (3.361). However we can obtain qualitative assessment of the compatibility between
the parameters obtained from the yield point matching and the symmetric part of the flow.
For instance, by comparing the relative ratios between parameters.

3.5.1.3 Results

In this section we give the results of the least squares optimization for the yield function
parameters. The far field stress at the sampled steps are shown in Figure 3.31 and Figure 3.32.
The single crystal moduli are taken from Kim et al. (2001, Table 11). It is possible that the
results we obtain for the yield point identification method may differ depending on which
segments of the full load process are taken to constitute the sets D in the least squares
algorithms. For example, there may be some sections of the loading which carry a heavier
weight compared to the overall data set. Additionally, the modest hardening present in the
macroscopic stress strain curve, Figure 3.31, suggests that we’d like the flexibility to localize
the optimizations somewhat in order to determine hardening trends. In recognition of these
possibilities we examine the homogeneity of the fitting algorithms at different parts of the
load, given different ‘bands’ of data from the load sequence. That is, we analyze subsets of
the loading curve to obtain parameter estimates. This is a traveling window throughout the
load test, as depicted in Figure 3.57. These bands will be called slices in the figures. A slice
size n indicates that n sequential image frames were used to compile the initial data set D.
The local slicing also lets us compute standard statistical information on the distribution
of the collective estimates for the best fit parameters. Thus we get some observation of an
uncertainty in the parameters, although this uncertainty does not include the local precision
uncertainty based on the lattice strain estimates described in §3.4.2.1.

In Figure 3.58 and Figure 3.59 are the results for the yield point detection and flow
function objective functions, for a slice interval of 3. The values for the yield function
parameters b11, b12, b22, c1, c2 are plotted on the vertical axis, the initial slice position is plotted
on the horizontal axis.

In Figure 3.58 we see in aggregate a general monotonic increase in the parameter b22, c1 as
hardening commences, and monotonic decrease for c2. c1 is the dominant parameter, which
multiplies the factor S11S22 − S2

12. Later on, we will see that according to crystal plasticity
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n = 5

image number

0.64
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Figure 3.57: Depiction of the traveling window of data (3.342) used in the least squares
refinement, such as (3.347). The data plot is the far field stress vs. diffraction image
number, as in Figure 3.32.

theory, this experimental data indicates that the prismatic system is the most active. This
is consistent with this integrity element being the most active due to its multiplication with
S12, the shear stress on prismatic planes. Figure 3.59 shows the parameters estimated from
the flow function. As stated previously, this fitting is only used as a check against the yield
point detection, and not for absolute parameter values since we cannot directly relate the
two without integrating the full plastic evolution/boundary value problem. Qualitatively,
the relative magnitude of parameters is in acceptable agreement with the data in Figure 3.58,
given the large degree of assumptions that went into obtaining a local estimate for K−1K̇.
That is, c1 is the largest in magnitude, followed by c2, etc. Furthermore, the numerical signs
of the parameters agree with the yield point detection method. Finally, the averaged values
over the entire load scan are presented in Table 3.7. Standard deviations are computed based
on the local slice results.

Next, in Figure 3.60 and Figure 3.61 are plotted the results for the slice interval 5. The
larger data increment smooths out the parameter estimates considerably from the slice size
3, yet still captures the monotonic trends present in Figure 3.58. The averaged numerical
values are presented in Table 3.6. Relative magnitudes of the parameter estimates from the
flow function method are again in agreement with the yield function detection method.

Finally, in Figure 3.62 and Figure 3.63 are shown the parameter estimates with a slice
interval of 8. The parameter estimates are again smoother, but some of the monotonic
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Table 3.5: Phenomenological parameters and standard deviations for yield point detection
technique over the full load interval, for the slice size n =3

b̄11 σb11 b̄12 σb12 b̄22 σb22 c̄1 σc1 c̄2 σc2 ȳmax [GPa2]
1.40 0.11 -0.25 0.13 0.50 0.25 -5.10 0.67 1.92 0.29 0.36

trend is filtered out by taking the larger set of data. Qualitative matching between the yield
function and flow function is about the same as for the previous cases.

To analyze results for convexity, we take the parameters from the slice size 5 as repre-
sentative. A check of the conditions (3.369) gives λ1,2 > 0 and λ5,6 > 0 automatically, and
by calculation

λ3 = 0.006, λ4 = 1.26, (3.374)

so that these parameters give a convex yield surface.

Figure 3.58: Best fit phenomenological parameters for the yield function for the Ti-7Al
alloy, determined by the yield point detection technique. The load slice interval was equal
to three. The monotonic trends on the parameters illustrate the hardening phenomenology
as in Figure 3.31.

Visual comparison to crystal plasticity. Since crystal plasticity has been adopted by
the community, the construction of yield surfaces for single crystals of the form (3.366) is
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Figure 3.59: Best fit phenomenological parameters for the yield function for the Ti-7Al
alloy, determined by the flow function technique. The load slice interval was equal to three.
The relative values of the parameters agree with the yield point detection findings shown in
Figure 3.58.

Table 3.6: Phenomenological parameters and standard deviations for yield point detection
technique over the full load interval, for the slice size n =5

b̄11 σb11 b̄12 σb12 b̄22 σb22 c̄1 σc1 c̄2 σc2 ȳmax [GPa2]
1.40 0.10 -0.23 0.10 0.47 0.20 -5.12 0.61 1.92 0.26 0.36

non-standard. Based on discussions with other researchers, it is of interest to compare the
polynomial yield function with a crystal plasticity model on a visual basis.

To do this, we probe several two dimensional subspaces of S-space and find the points
S∗ where y(S∗) = 0. The crystal plasticity model analog to (3.366) is given by

ycp(S) = max

{
|S · sji ⊗ nj

i |
(τc)

j
i

: i = 1, 2, 3; j = 1, 2, ..., N i
c

}
− 1, (3.375)

where the index i corresponds to the slip system family, e.g. basal, prismatic, or pyramidal,
and the index j corresponds to an enumeration of the slip system vectors sj,nj for that par-
ticular slip system family. N i

c is the number of slip systems and τ ic is the yield strength for the
given slip system. Equation (3.375) could be written in the same fashion as (2.5), the double
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Figure 3.60: Best fit phenomenological parameters for the yield function for the Ti-7Al alloy,
determined by the yield point detection technique. The load slice interval was equal to five.
The monotonic trends on the parameters still illustrate the hardening phenomenology as in
Figure 3.31.

Table 3.7: Phenomenological parameters and standard deviations for yield point detection
technique over the full load interval, for the slice size n =8

b̄11 σb11 b̄12 σb12 b̄22 σb22 c̄1 σc1 c̄2 σc2 ȳmax [GPa2]
1.40 0.08 -0.21 0.06 0.42 0.12 -5.19 0.43 1.88 0.18 0.36

summation simply highlights that the crystal plasticity inspired yield function is governed by
three strengths, τ ic, i = 1, 2, 3 for the basal, prismatic, and pyramidal systems. In the follow-
ing figures we took τbasalc = 0.25 GPa, τprismatic

c = 0.2 GPa and τpyramidal
c = 0.55 GPa; these

values are motivated in the next section. The basal and prismatic strengths were informed
from the experimental results in the next section. The pyramidal strength was informed
from Barton and Dawson (2001), which lists a ratio of prismatic to pyramidal strength of
2/7. A ratio of prismatic to basal strength is given as 4/7, but since the experimental data
gave a slightly different ratio we are not holding these values as strict relations.

We scanned the subspaces (S11, S12), (S33, S12), (S13, S23), (S11, S22) to plot the yield sur-
faces. For each subspace, all other stress components were set to zero. For example, for
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Figure 3.61: Best fit phenomenological parameters for the yield function for the Ti-7Al
alloy, determined by the flow function technique. The load slice interval was equal to five.
The relative values of the parameters agree with the yield point detection findings shown in
Figure 3.60.

S11, S12 the stress tensor was parametrized under one dimensional trajectories

S(s) =

S11(s) S12(s) 0
S12(s) 0 0

0 0 0

 . (3.376)

This was chosen as one among many ways to visualize the comparison between the crystal
plasticity form and the polynomial. The resulting data is shown in Figure 3.64. In the figure,
the polynomial fit seems to capture the general anisotropic shape of the crystal plasticity
prediction, with smooth ellipses instead of facets. When placed on equal grounds, the crystal
plasticity function effectively has many more material constants than the phenomenologi-
cal model. While the phenomenological model has 5 constants, considering the slip system
dyads s,n to be the equivalent of 3 more constants each (two to specify a unit vector, n,
one additional to specify the unit vector orthonormal to n), the crystal plasticity function
has 18 · 3 = 54 constants from the slip dyads, plus 3 more from the τ ic. From this view-
point, the polynomial function based on point group symmetry alone is appealing for further
investigation.

In the next section, we use a similar method of tracking grain averaged strains, but use
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Figure 3.62: Best fit phenomenological parameters for the yield function for the Ti-7Al alloy,
determined by the yield point detection technique. The load slice interval was equal to eight.
The monotonic trends on the parameters don’t capture the hardening phenomenology as well
as the finer slice sizes.

crystal plasticity phenomenology. Restricting attention to grain averaged slip systems leads
to a slightly different approach of obtaining yield parameters.
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Figure 3.63: Best fit phenomenological parameters for the yield function for the Ti-7Al
alloy, determined by the flow function technique. The load slice interval was equal to eight.
The relative values of the parameters agree with the yield point detection findings shown in
Figure 3.62.
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Figure 3.64: Comparison of crystal plasticity yield surface, (3.375) with polynomial fit based
on experimental data.
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3.5.2 Crystal plasticity constitutive analysis of continuous load
scan

In this section we use the same continuous load scan data as in the previous section to
determine constitutive parameters according to crystal plasticity theory. The continuous
load experiment was described in §3.4.2.2.6. Recall that the crystal plasticity flow rule is of
the form (2.5) and (3.5.2), rewritten here as

Ḟp (Fp)−1 =
∑
α

γ̇αmα
0 ⊗ nα

0 ,

where the shear rate γ̇α is given by

γ̇α = γ̇0

(
|τα|
sα

)1/m

sign(τα),

where τα = S·mα
0 ⊗nα

0 is the resolved shear stress on the slip system, sα is the flow resistance
for the slip system, γ̇0 represents a reference shear rate, andm is a rate sensitivity parameter.
In the previous section, we use a yield point detection scheme to collect data points which
were deemed to be in a state of yield. Then a least squares algorithm on the data set gave
an estimate for the parameters in the constitutive equation for the yield function. In this
section, the restricted form for yield in crystal plasticity leads to a different approach.

Plastic flow is governed by the parameter sα in (3.5.2). That is for the αth slip system,
with associated dyadmα

0⊗nα
0 , compute the resolved shear stress τα = S·mα

0⊗nα
0 . Collecting

all values for τα, for all grains in the crystal and all symmetrically equivalent slip systems
and plotting on a histogram gives a visualization of the resolved stress magnitude on the
slip system. If the resolved shear stress saturates, then this is an indirect observation that
that slip system is active; hence the maximum resolved stress max{ταi : i = 1, 2, ..., Ngrains ·
Nsteps · Nslipsys } represents the experimental estimate for sα. For the titanium alloy tested,
there are three slip system families: prismatic, basal, and pyramidal. The prismatic system
has three dyads, the basal also three, and 12 for the pyramidal system. The prismatic, basal,
and pyramidal systems are illustrated in Figure 3.65.

We present these histograms in Figures 3.66, 3.67, 3.68. The prismatic projections are
shown in Figure 3.66. The basal projections are shown in Figure 3.67. The pyramidal projec-
tions are shown in Figure 3.68. From Figure 3.66 we see a peak in the maximum histogram
at approximately 200 MPa. From Figure 3.67 we see a peak in the maximum histogram at
approximately 260 MPa. We do not see any saturation behavior in the pyramidal system,
or do not have the resolution to pick up the saturation. These values are summarized in
Table 3.8. It is noteworthy that according to the misorientation analysis of §3.4.2.2.6, the
prismatic system was thought to be active based on the development of anisotropic texture
in individual grains. That the prismatic slip system strength was observed to be weaker than
the basal system is further verification of this finding.
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(a) Pyramidal slip plane geometry.
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(b) Basal and prismatic slip planes.

Figure 3.65: Slip system geometry for titanium alloy. On the left, two slip systems are shown;
there are a total of 12 slip systems in the pyramidal slip systems. Three representative slip
systems from the basal and prismatic systems are also shown in Figure 3.47

Table 3.8: Estimated values for slip system strengths for HCP crystal. Uncertainties are
estimated based on the spread in the histogram and uncertainty from §3.4.2.1

Prismatic Basal Pyramidal
sα 200± 30 MPa 260± 40 MPa N/A
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(a) loadstep=1 (b) loadstep=2 (c) loadstep=3 (d) loadstep=4

(e) loadstep=5 (f) loadstep=6 (g) loadstep=7 (h) loadstep=8

(i) loadstep=9 (j) loadstep=10 (k) loadstep=11 (l) loadstep=12

(m) loadstep=13 (n) loadstep=14 (o) loadstep=15 (p) loadstep=16

Figure 3.66: Resolved shear stresses τα = S·s⊗n for the (3) prismatic slip systems, collected
for each grain in the polycrystal. Slip saturation at ≈ 200 MPa.
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(a) loadstep=1 (b) loadstep=2 (c) loadstep=3 (d) loadstep=4

(e) loadstep=5 (f) loadstep=6 (g) loadstep=7 (h) loadstep=8

(i) loadstep=9 (j) loadstep=10 (k) loadstep=11 (l) loadstep=12

(m) loadstep=13 (n) loadstep=14 (o) loadstep=15 (p) loadstep=16

Figure 3.67: Resolved shear stresses τα = S · s ⊗ n for the (3) basal slip systems, collected
for each grain in the polycrystal. Slip saturation at ≈ 250 MPa.
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(a) loadstep=1 (b) loadstep=2 (c) loadstep=3 (d) loadstep=4

(e) loadstep=5 (f) loadstep=6 (g) loadstep=7 (h) loadstep=8

(i) loadstep=9 (j) loadstep=10 (k) loadstep=11 (l) loadstep=12

(m) loadstep=13 (n) loadstep=14 (o) loadstep=15 (p) loadstep=16

Figure 3.68: Resolved shear stresses τα = S · s ⊗ n for the (12) pyramidal slip systems,
collected for each grain in the polycrystal. No slip saturation is observed.
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Figure 3.69: Histogram of the shear stress projection for each of the (3) prismatic systems,
for each grain, along with the far field load indicated. Load step = 8.

Finally, in Figures 3.69, 3.70, and 3.71 are shown the stress projection results in higher
resolution than in Figures 3.66-3.68. The far field stress level recorded by the load frame is
also shown, to show that macroscopic yielding and slip system saturation occur at the same
time. The resolved shear stress in the horizontal axis of the figures is the Eshelby stress of
(2.48). Since the slip vector and slip normal are orthogonal, in the inner product between
E ′ · s⊗n the term ΨI gets killed off and only the term HTP = CS remains. Since these are
small elastic strains, the figures would not change significantly by replacing S ≈ CS. We
do not attribute great significance to the use of the large elastic strain measure CS. It is
primarily worth pointing out the fact that the X-ray modeling approach of §3.3.5 directly
captures the information required to compute such quantities. These quantities would not
be available using small elastic strain X-ray kinematics of (3.228).
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Figure 3.70: Histogram of the shear stress projection for each of the (3) basal systems, for
each grain, along with the far field load indicated. Load step = 8.
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Figure 3.71: Histogram of the shear stress projection for each of the (12) pyramidal systems,
for each grain, along with the far field load indicated. Load step = 8.
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3.5.3 Discussion

We now discuss the further aspects of the methods and findings of this section. The phe-
nomenological yield function based on (3.366) was found to be compatible using two differ-
ent estimation methods: we used estimation methods based on (3.347), as well as based on
(3.361). These methods represent different views at the same parameters, and were found
to be compatible with each other, giving some degree of comfort.

The crystal plasticity function was obtained differently - not from a least squares opti-
mization but from a histogram visualization. This was possible because of the presumed
form for plastic flow, in terms of resolved shear stresses. The method was able to get good
estimates for the prismatic and basal system slip system strengths.

We now discuss several topics which came up naturally in the course of this study, which
are relevant to report. We also suggest methods for improvement of the parameter estimates
from these two methods.

More on constitutive formulation for HCP crystals. Returning to the formulation
of the phenomenological model in §3.5.1.2, it may be questioned why we didn’t try the
same deviatoric stress technique as for the cubic crystal in §2.3.3.1 (removing the volumetric
integrity element and expressing everything in terms of deviatoric stress). We now examine
this possibility.

First, recall that the integrity elements for HCP symmetry are given in (3.365). Using
the relation

A11 + A22 + A33 = x1 + x2,

we can replace either of x1 or x2 by A11 + A22 + A33. Then for a pressure independent
yield function (pressure ∼= tr S) we can remove this invariant from consideration. After this
removal the integrity basis is only three elements, given by

x1 = A33, y1 = A11A22 − A2
12, y2 = A2

13 + A2
23, (3.377)

with quadratic order polynomial expansion for the yield function

y (A) =
1∑

i=1

1∑
j=1

bijxixj +
2∑

i=1

ciyi. (3.378)

But using (3.378) in (3.368), and computing the eigenvalues per the convexity condition as
in (3.369) gives the results

λ1 = 2b11
λ2 = −2c1

λ3 = −c1
λ4 = c1

λ5 = 2c2
λ6 = 2c2

. (3.379)

For the yield function (3.378) to be convex, λi ≥ 0, (3.379) requires that c1 = −c1 =⇒
c1 = 0. Therefore we remove the integrity element y1 from the expansion (3.378). After this
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removal, we arrive at a strange looking yield function, since it is independent of many stress
components at quadratic order. The integrity elements up to second order are just

x1 = A33

y1 = A2
13 + A2

23,
(3.380)

with the polynomial expansion (2 parameters)

y (A) =
1∑

i=1

1∑
j=1

bijxixj +
1∑

i=1

ciyi. (3.381)

Equation (3.381) did not seem to be a physically valid yield function, so we retained all
five integrity elements in (3.365) in developing the constitutive equations for dihexagonal-
dipyramidal materials, and obtained the desired property of volume incompressibility by
constraining the parameter values.

It should be noted that the five parameter yield function is pressure insensitive by virtue
of the constraints (3.373). Taking a parametrized path for the stress of a pressure form,

Ṡ = sI, (3.382)

then for this pressure increment, the requirement that the yield function be unchanged is
written as, using (3.382)

ẏ = 0 =⇒ 0 =
∂y

∂S
· Ṡ

=⇒ 0 = s
∂y

∂S
· I

=⇒ 0 = tr
∂y

∂S
,

a condition which is satisfied by the parameter constraints (3.373).

Improving local estimates for F. In this study, we used macroscopic stress-strain data,
along with the polycrystalline Young’s modulus and Poisson ratio in order to get macroscopic
estimates for F. This was explained in §3.5.1.1. We then applied the macroscopic estimates
locally, and in combination with the diffraction measurements of H, were able to estimate
K locally from K = F−1H.

Prior to this, we tried another methodology to improve the macroscopically derived
estimates for F, by attempting to estimate F locally from the start. Since we obtain the
grain center of mass x during the grain averaged refinement, it was though possible to use
this data to define a local measurement of F. This would be obtained from tracking the
evolution of the configuration defined by particles at each of the grain centers. But in the
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end, precisions on the precessions were up to ±75 µm, and the degree of total straining
O(2%) was not high enough that any change in the grain center of mass could be attributed
to material strain.

Such an approach at getting local estimates for F may have promise if tracer particles
were present in the microstructure, perhaps at grain boundaries. If the size of the particles
were small enough, the precision of the location placements would be improved over using
the grains alone. However it’s not clear how many particles would successfully be able to
be distinguished in the data, since they would have to be processed along with the grains of
interest. It may be that the beam would have to be so small to process the data that the
advantages of using the efficient, wide beam illumination of the polycrystal would disappear
and other X-ray techniques would be preferred. In the future, a experiment combining
the use of X-ray diffraction with Digital Image Correlation on a two-dimensional material
geometry (thin film) seems to be the most promising method to obtain local measurements
of F along with the lattice measurements H.

Moduli determination. In this section we have focused on determining plastic defor-
mation constitutive properties of the single crystal from a simple polycrystalline test. For
certain materials, particularly alloys obtained from complicated heat treatments, determin-
ing the single crystal elastic moduli is also of interest since large single crystals may not be
available. We now discuss a framework for estimating single crystal moduli from the X-ray
diffraction technique employed in this study. Efstathiou et al. (2010) have done something
similar previously, but their approach can be criticized on many grounds, such as non-proval
of initial condition dependence, so the field is still open for improvement.

In overview, we use the X-ray diffraction data from the wide beam scan to generate
a numerical discretization for the microstructure in the polycrystal. Generating true mi-
crostructures from X-ray diffraction data is the field of the near field X-ray technique (Suter
et al., 2006; Hefferan et al., 2010) and takes much longer than the wide beam scan, at the
benefit of increased accuracy. It remains to be seen how accurate the wide beam based
microstructures are compared to experimental data, however without the capability to know
this we press on valiantly. After obtaining the approximate microstructure and embedding
it in a numerical simulation, we can directly simulate the continuous loading experiment
numerically, and compare XRD-based estimates for the grain deformation to the numerical
prediction. This forms the basis for a least squares method over any set of single crystal
material parameters desired, not just elastic properties. Additionally, this numerical method
could be applied to refine the estimates for the plastic parameters in the previous section.
We now examine the details.

In §3.2.2.4, from Equation (3.118) we obtained an expression for the intensity of a diffrac-
tion peak based on diffraction angles and physical volume of the crystal. Using this analysis
of the intensity of diffraction peaks, we can determine the relative volumes of each grain
measured in the polycrystal. Absolute volume could be estimated, however this would re-
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quire beam intensity calibration procedures which were not used for this study. Therefore
we arrive at the microstructural data

M = {(x,R, V )i : i = 1, 2, ..., Ngrains}, (3.383)

where R ∈ SO(3,R) comes from the polar decomposition of the lattice deformation H,
x ∈ R3 is the spatial position of the center of the grain, and V is the relative volume of
the grain. Using a microstructural generation technique similar to that in §2.4.2.1.1 we can
arrive at a finite element discretization of the material in the region of interest. For example,
in Figure 3.5.4 we seed the image of the fixed lattice configuration (unit cell) inM under the
spatial configuration placement using x,R, V . The hexagonal prisms are scaled according
to the volume V . This microstructure was taking from an wide box scan of the titanium
specimen in the region of interest, with a 500 × 1000 beam size. This scan was taken at
a far field stress of σ = 400 MPa, which is not part of the continuous load scan depicted
in Figure 3.31. The box scan data is given to LLNL’s finite element code ale3d which
executes the microstructural generation algorithm. Figure 3.73 is the resulting discretized
material, with the 1coloring indicating material regions with the same orientation, R. This
is a different view of the same microstructure as in Figure 3.5.4.

We now consider the formulation of the least squares problem to determine single crystal
moduli from this numerical capability. The load increment applied to the data is between
the 400 MPa box scan level and the start of the continuous scan, at about 500 MPa, see
Figure 3.31. Based on linearity, in the numerical simulation, the load increment applied is
simply ∆σ = 100 MPa, starting from an unstressed state.

Then the least squares objective function expressing the different between data and sim-
ulation is written as

Φ(Θ) =

Ngrains∑
i=1

[
(∆E)femi (Θ)− (∆E)XRD

i

]2
, (3.384)

where Θ ≡ C, the single crystal moduli, (∆E)XRD
i =

[
EXRD

σ=500 MPa − EXRD
σ=400 MPa

]
i
, and where

(∆E)femi =
[
Efem

σ=100 MPa − Efem
σ=0 MPa

]
i
=
[
Efem

σ=100 MPa

]
i
. The simulated strain is dependent

on the single crystal elastic moduli, so that we can emphasize the functional dependence

by writing Efem
σ=100 MPa = Ê

fem

σ=100 MPa(Θ). Least squares iterations are then performed to
determine the optimal values for Θ∗ = C∗, see §3.4.1. In §3.4.2.1 the uncertainty in the
lattice deformations from the data can be obtained. This uncertainty can be incorporated
through the use of weights on the residual equations in (3.384), so that (3.384) becomes

Φ(Θ) =

Ngrains∑
i=1

1

u2E

[
(∆E)femi (Θ)− (∆E)XRD

i

]2
, (3.385)

where the weight is taken as the average uncertainty between the two data points at the two
stress levels, so that uE = 1/2

(
uXRD
E

∣∣
σ=500 MPa

+ uXRD
E

∣∣
σ=400 MPa

)
.
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Despite the expenditure of much efforts, the results of this technique applied to the
present continuous loading experiment proved unsuccessful. The optimal values from the
least squares algorithm did not exhibit a strong minimum, that is, even at values where
∇ΘΦ ≈ 0, Φ(Θ) >> 0 in relative terms. There are several possible reasons why the
experimental data was not satisfactory for this study. First, the elastic load step was at a
high state of stress (already at 80% of yield), which may have resulted in local plastic flow
in the step which was presumed to be elastic. In Figure 3.31 the latter load increment at
500 MPa is very close to the knee of the stress strain curve. In fact, the data of Figures
3.66, 3.67 indicates that at the 500 MPa level at the start of the loading, saturation of slip
systems is indicated in the data, indicating that plastic flow may be occurring locally in the
sample before macroscopic yield at 550 MPa. Since comparing XRD data with the results
of the finite element simulation relies on the lack of plastic deformation, this is probably
a major problem. Further evidence of plastic flow is exhibited in Figure 3.75, where the
changes in the T22 component of the Cauchy stress tensor are shown for the FEM and XRD
data. The numerical simulation has very tight spread around 100 MPa, whereas the XRD
data is centered on 100 MPa, but has grains at higher and lower increments of stress. Since
the FEM data is not easily visible, it is replotted in Figure 3.75 for a higher resolution
depiction. Without an independent measurement of the same microstructural data, it is not
clear if the grains at very high local stress states in Figure 3.75 represent true data, or are
mis-indexed grains carrying erroneous peak locations (see §3.3.4). This is a shortcoming of
the full illumination technique used in this study, that there are few independent validations
possible to determine if results are erroneous. In any case, removal of the grains which were
deemed erroneous based on large stress increments did not improve the performance of the
least squares refinement, possibly suggesting that the size of the load step, 100 MPa, is not
large enough to pull elastic strain measurements for the individual grains out of the noise
level.

Another point to make is the presence of possible bias in the calibration data. In Fig-
ure 3.72, the far field stress strain data is plotted against the volume weighted average
Cauchy stress,

T̄ =

Ngrains∑
i=1

φiTi, (3.386)

where φi = Vi/
∑

j Vj is the volume fraction of the ith grain. These stresses are obtained
from previous studies of moduli for this alloy, so the bias in the figure may also be a result
of using slightly erroneous single crystal moduli. Attempting to match the single crystal
moduli to minimize a residual based on (3.386) compared to the far field stress did not give
acceptable results.

Another point is that we seeded the initial microstructure with only orientation factors R
from the XRD data, and did not take into account initial lattice strain at the initial 400 MPa
level. Residual strains may also be present in the polycrystal which are not being accounted
for in the finite element simulation. Residual stresses may be why we appear to have local
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yielding before macroscopic yield, in Figures 3.66, 3.67. We had assumed that linearity of
the stress strain response would enable direct translation of the 400−500 MPa experimental
increment to the 0− 100 MPa simulated increment. But it is possible that residual stresses
in the polycrystal exacerbated the heterogeneity exhibited in Figure 3.75. Unfortunately
generating the fullH(X)-field in the polycrystal is beyond current experimental technologies,
so if the problem of residual stresses is significant the wide beam technique will prove to be
ineffective in similar constitutive determinations.

Summary of suggested remedies. If this experiment were to be attempted again to
measure single crystal moduli, there are several quite simple modifications which are indi-
cated. First, measure the lattice state at an unloaded external stress level, instead of so close
to the plastic region. Then the increment would be more assuredly elastic over at least some
range of testing. Second, take a large enough elastic stress increment to be sure that noise
will not cover up the influence of the model’s residuals. From 0− 50% of the polycrystalline
yield stress should be sufficient for most metals.

3.5.4 Summary

In this section we have suggested several methods for using the high energy X-ray diffraction
technique to obtain constitutive information required for theoretical models of plasticity.
This type of experiment has been successful in obtaining novel observations of material
behavior, but its use in extracting constitutive data has only begun to be explored. The
present contribution is among the first to investigate plastic properties using the technique.

We described different approaches to extract both elastic and plastic properties from high
energy X-ray diffraction with a wide beam source. We first used an approach where each
grain in the polycrystal was treated as an independent experimental test. For the model of
Chapter 2 we were able to obtain reasonable estimates for the material parameters from a
suggested form for the yield function. The determination of a yield event was the largest
limitation on the confidence which can be assigned to the parameter values.

We performed a similar task based on crystal plasticity theory. This theory required
fewer assumptions on a yield event, since attention is restricted to resolved shear stresses
instead of arbitrary stress states. The crystal plasticity method of using histograms to obtain
resolved shear stresses appears very efficient for getting constitutive information required for
its model.

For the phenomenological theory, an accurate local measurement of F would go a long
way to improving the deduction of constitutive parameters, by enabling more precise mea-
surements of the plastic deformation. Then the yield point detection technique based on
elastic evolution could be shelved in favor of simply monitoring the evolution of the K field
through the use of K = F−1H, which would be a more accurate indication of a yield event.
Based on the rate-independent theory of plastic deformation, evolution of K only occurs if
the lattice state is on the yield surface. Local measurement of F could be accomplished by
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simultaneous Digital Image Correlation for example, and the problem appears to be tractable
in the near future.

For both cases, improvements in the experimental precision of lattice deformation mea-
surements would be beneficial. According to §3.4.2.1, there may be gains available by reduc-
ing the pixel size or changing the distance to the detector. The closer precisions on H can
get to the level of bonded resistance strain gauges, e.g. 5 − 20% →< 5%, the more likely
these combined numerical-experimental techniques suggested in this section can be trusted
to give quantitative results.

Figure 3.72: σ vs ε for the continuous load scan, along with the volume averaged Cauchy
stress, computed from (3.386). Solid points indicate where diffraction measurements were
taken. The discrepancy can be due to erroneous elastic moduli or to calibration bias errors.
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(a) Initial seed points for microstructural algorithm. (b) Finite element mesh produced from the seed
data on the left, used for the numerical discretiza-
tion

Figure 3.73: The hexagonal prisms represent the images of the fixed lattice configuration
under the placement x,R, V , where V is a scaling for the size of the grain.
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Figure 3.74: Histogram of the σ22 stress increment, for each individual grain after the macro-
scopic change ∆σ22 = 100 MPa. The large spread of values in the experimental histogram
suggests that plasticity has occurred. By comparison, the FEM data has a much tighter
spread. This suggests that moduli determination efforts from this data set will be imprecise.

Figure 3.75: Histogram of the σ22 stress increment for each individual grain, from the FEM
simulation after the macroscopic change ∆σ22 = 100 MPa. This is the same data as
Figure 3.74 on a higher resolution. This distribution of stress increment is much tighter than
that observed in the X-ray data.
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3.6 Conclusion

We conclude by giving a review of this chapter and some final thoughts. In this chapter we
gave a thorough background for the physics of X-ray diffraction. We derived the reciprocal
lattice as the Fourier transform of the physical lattice, and were able to obtain expressions
for the integrated energy of a diffraction peak as it passes through the diffraction condition.
This laid the foundation for rich descriptions of X-ray diffraction for spatially inhomogeneous
materials.

Then we described the detailed procedures of a modern class of X-ray diffraction ex-
periments: high energy monochromatic synchrotron measurements, with a wide beam size.
This method has already shown the ability to obtain qualitative information about material
behavior (Jakobsen et al., 2006), but little has been done in the way of using the technique
to extract constitutive behavior. We gave a broad introduction to the method, and described
two approaches to combining diffraction data with the X-ray diffraction theory to produce
estimates of the lattice state and lattice inhomogeneity. Both methods represent new ap-
proaches to analyzing X-ray data for this class of diffraction experiment. The first method
was a grain averaged approach, where estimates of center of volume position and lattice
deformation on a volume averaged basis were obtained. The second method used a forward
model to incorporate the projection of spatial inhomogeneity into the lattice deformation
space.

The outcomes from these methods differ. The grain averaged method led to an esti-
mate for the uncertainty associated with the measurements, which had not previously been
explored in the literature. Such uncertainty quantification is a necessary condition for mean-
ingful reporting of constitutive parameters from a given experiment. The forward modeling
method led to the ability to track the development of intragranular misorientation. With
some accepted hypotheses on slip phenomena, this led to an experimental indication of slip
activity on the prismatic system of the titanium alloy tested. This purely kinematic finding
was found to be consistent with subsequent constitutive analysis of the data presented in
the final section.

The final section was concerned with the extraction of single crystal constitutive param-
eters from a continuously loaded specimen of titanium polycrystal, up to 2% total strain.
The reason this attempt is worthwhile is because certain materials are difficult to obtain in
the large single crystals required for an idealized experimental environment. For example,
the heat treatments required to attain certain microstructures make polycrystalline samples
generally easier to obtain. Therefore, if single crystal properties could be estimated from a
test of a polycrystalline material, this would be a great asset to the quantitative calibration
of material models in plasticity. Such calibrations are crucial to testing the predictions of
theoretical models but are rare to find in modern literature. This is particularly the case for
plasticity journals.

We embraced two methodologies for obtaining single crystal parameters. First, we
adopted the phenomenological plasticity theory which was set up in Chapter 2. We ob-
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tained best fit parameters for the yield function for dihexagonal-dipyramidal point group
symmetry (HCP). These parameters also satisfied the additional requirements of constitut-
ing a convex yield surface, volume incompressibility, and pressure insensitivity. We were
also able to discern qualitative hardening phenomenology through the monotonic evolution
of the parameters as the test commenced, providing some encouragement for the method.
The parameter estimates we obtained from the yield determination methodology were com-
patible with estimates we made deducing plastic flow evolution in the material, giving further
credence to the numerical values we obtained. Secondly, we adopted the crystal plasticity
phenomenological perspective, which considers resolved shear stresses on slip planes in the
crystal as governing the yield concept. Due to the form of crystal plasticity, this approach
had fewer degrees of freedom, and results were readily visualized by producing histogram
plots of the resolved shear stresses on different slip systems. We obtained estimates for the
critically resolved flow stress on the basal and prismatic slip systems of the crystal using this
approach. The prismatic system was found to have a lower flow stress, which agrees with the
kinematic observations of intragranular inhomogeneity arrived at using the forward model.

Outlook Although the data from the X-ray experiments contains scatter, the technique
continues to show promise for future development. Although improvements are necessary,
the method can be elevated to be used to confidently extract constitutive data, using the
approaches described. For example, in a future test increasing the precision on the diffraction
technique and adding direct independent measurements of the local material deformation
would be a worthy addition to the experimental methodology. The former could be obtained
by selecting optimum values for the geometric parameters in the experimental setup, such as
the distance to the detector, pixel size, or detector area. The latter could be accomplished by
coupling X-ray diffraction measurements with a technique such as Digital Image Correlation.
Interestingly, this dual prescription is precisely what G.I. Taylor did in the 1920s with the
tools available of the time. This underscores both the contributions of Taylor, as well as
lamenting the fact that experimental techniques have evolved so slowly over the last century.
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Chapter 4

Conclusion

In this thesis we have contributed to theoretical and experimental aspects of continuum
plasticity. Phenomenological plasticity models for single crystals, without using the crystal
plasticity formulation based on slip systems, have previously been present in the literature.
However they have not been developed to the point of being able to compare predictions to
experimental data. This is due to lack of proposed or validated constitutive models, which
is in part due to the severe experimental challenges of plasticity. Therefore one contribution
in this document was completing the constitutive framework for these models. The resulting
model achieves the rate independent limit, and has a natural viscoplastic extension. We
are able to attain calibration of the constitutive functions for hexoctahedral point group
symmetry against crystal plasticity models for FCC and BCC materials from the literature.
After calibration, we applied a variety of simple plane strain boundary value problems to
exercise the model, testing the influence of various material parameters. These simulations
show a rich phenomenological prediction, including a natural strain localization effect and
the development of geometrically necessary dislocation networks.

We also described the experimental technique which is compatible with the theory: X-ray
diffraction. The synergy between the theory and experiment is made evident in that they
share the same mathematical structures when appropriately translated. We gave details of
the experimental procedures for high energy synchrotron X-ray diffraction, a relatively new
tool which shows promise for investigating plastic behavior which had not been previously
revealed. To date this experiment has been used mostly for qualitative discoveries; we eval-
uated the method’s ability to deliver quantitative information such as material parameters
for single crystal constitutive functions. We developed two new methods of analyzing data
from these experiments. The first method enabled the estimation of uncertainty in lattice
deformation measurements. The quantification of experimental precision from these tests
is crucial in order to properly report constitutive parameters derived from the data. The
second was able to assess intragranular misorientation due to evolving spatial inhomogeneity.
The misorientation information further enhances the amount of primitive data which can be
derived from such experiments, in that obtaining such information is independent of any con-
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stitutive function. In combination with hypotheses about plastic deformation modes, such
information can lead to direct indications of plastic deformation history. This additional
capability of the experimental technique makes pursuing such experiments more attractive.

Finally, we used experimental data from a continuously loaded tension test of a titanium
polycrystalline alloy to determine single crystal constitutive information. This was not the
original intended application of the experiment; despite this we were able to obtain quan-
titative estimates of the single crystal yield function parameters. The resulting estimates
pass available consistency checks with theoretical aspects of the proposed plasticity model,
lending credence to our reported values. Our experience with these efforts allowed us to
make recommendations for future experimental programs which seek to determine similar
constitutive information. For example, the independent verification of total material defor-
mation through the use of Digital Image Correlation would allow a more precise method to
detect when plastic deformation occurs, which is an important requirement of the methods
we employed.

Potential application of the model. The use of crystal plasticity is widespread, and
most researchers are satisfied with the model. However the proposed formulation of plas-
ticity may be of use in the modeling of materials for which the plastic behavior is not well
characterized according to slip system activity, such as MgGeO3 post-perovskite, a material
in the Earth’s mantle. For example, the slip systems for this material are not universally
agreed upon (Merkel et al., 2006). Since the point group symmetry of such a material is
known (rhombic-dipyramidal in the notation of Green and Adkins (1970)), it is conceivable
that using the phenomenological model proposed here would be accommodating enough to
available experimental data to allow calibration. Subsequent simulations involving plastic
deformation of the material could then commence. See for instance Equations (2.151) and
(2.152), which characterize the yield function y(S) and lattice reorientation function Ω(S)
for the required point group symmetry (rhombic-dipyramidal).

We should note that in our constitutive models we considered polynomial functions,
which produce smoother yield surfaces than the vertex yield surfaces of crystal plasticity,
see Figure 3.64. However experimental evidence indicates that for some materials, smoother
yield behavior may better match experimental data. In this regard see Figure 4.1, which
shows simulated and experimental deformation textures for quartz for different constitutive
models of plasticity. This particular model differs from ours, but qualitative comparisons
are valid. The model corresponding to the smooth yield surface matched the experimental
texture (on the far right) the best.

Final remarks. Plasticity of crystals is certainly a difficult subject. The mechanisms gov-
erning the deformation of crystals are highly complex interactions between atoms. These
interactions result in phenomena such as dislocations and phase transformations. In the
face of all this complexity, until computational resources make continuum theories obsolete,
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the flexibility of the phenomenological model to capture meso- or macro- scale observable
physical effects is appealing. In the simulations of the model we observed rich phenomeno-
logical behavior such as strain localization and dislocation networks. These findings seem to
discredit what was postulated in §2.1.4, item 4, which didn’t think such an approach could
capture microscale observations.

Although the simulations are promising, the success of a phenomenological model is
determined by its ability to actually model material behavior, over a range of conditions
large enough to be considered useful. For example, a phenomenological model requires the
specification of constitutive formula and associated material parameters. The value of the
parameters must be independent of the experiment used to obtain the parameters - as they
represent an intrinsic property of the material. In other words, the calibration of the model
parameters according to one experiment should result in acceptable agreement in other
experimental configurations. It remains to be seen if the values obtained for the titanium
yield function parameters in this work are to be borne out in subsequent experiments. In the
meantime, the reported parameters can give other researchers a foothold into implementing
the modeling framework for their applications.

We hope that it has been made clear that the final word in continuum plasticity theo-
ries will not be made until experimental methods advance significantly from their present
state. In many fields, experiments outpace theoretical development; however this is not be
the case for continuum plasticity. The high energy X-ray diffraction measurement method
described in this thesis have already shown success for qualitative discoveries in plasticity.
It remains to be seen how useful the method is in determining quantitative information:
the sort of information which can distinguish the different predictions of various plasticity
models, with sufficient precision(!). The research in this thesis suggests affirmative progress
to this question.
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Figure 4.1: Deformation textures of quartz, from Kocks et al. (1998, p. 566). Copyright
1998, Cambridge University Press. Reprinted with the permission of Cambridge University
Press.
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Appendix A

Appendix

A.1 Extra definitions

In this section commonly used shorthand, formula, and other similar quantities are stored
for reference.

Spherical polar coordinates. The spherical polar coordinate chart is given by

eρ(α, β;p,q, r) = cosαr+ sinα(p cos β + q sin β), (A.1)

for an orthonormal basis p,q, r. Regarding (A.1) as a diffeomorphism between coordinate
manifolds, the metric, gij, corresponding to the map χ(ρ, α, β) = ρeρ(α, β) is obtained from
χ∗δ where δ is the Euclidean metric and ()∗ denotes the pullback map (Nakahara, 2003):

gij =

1 0 0
0 ρ2 0
0 0 ρ2 sin2 α

 . (A.2)

Euclidean norm.
‖x‖ ≡

√
x · x, x ∈ Rn. (A.3)

Unitization. Given a vector a, the unit vector associated with a is given by

â ≡ a/‖a‖, (A.4)

where ‖a‖ =
√
a · a. For a ∈ R3, â ∈ S2.
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Rotation elements. Rotation tensors are conveniently parametrized as functions of an
axis of rotation, a ∈ S2 and angle of rotation about that axis, θ. We write this function as

R̂(a, θ) = R̂(r) = I+W(r̂) sin(‖r‖) +W2(r̂)(1− cos(‖r‖), (A.5)

where r ≡ θa, I is the identity and

W(r̂) =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 , (A.6)

where r̂ is the unit vector associated with the angle axis parameters r, see (A.4).

Projection. The projection operator 1 for a given vector a is computed by

1[a] = I− â⊗ â. (A.7)

Box product.
[a,b, c] ≡ a · b× c, (A.8)

for vectors a,b, c ∈ R3. See Chadwick (1999).

Fourier transform Many of the following formula can be found in Guiner (1963).

trans[f ](g) ≡
∫ ∞

−∞
f(x) exp−2πig·x dx, (A.9)

where f : x → R, trans[] is the Fourier transform operation, g is the coordinate in reciprocal
space, x is the coordinate in the physical space, and dx is the volume element for the
coordinates x. The integration is over all dimensions in x.

The transform of the function 1 is given by

trans[1](g) = δ(g), (A.10)

where δ is the Dirac-δ function.

Convolution. The convolution or Faltung between two functions f, g : x → R is

(f ∗ g)(x) ≡
∫
f(u)g(x− u)du, (A.11)

We also have the properties

trans[f ∗ g] = trans[f ]trans[g], (A.12)

trans[fg] = trans[f ] ∗ trans[g]. (A.13)
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Identity matrix. When using reciprocal vectors, it is occassionally useful to express the
identity in the form

I = gi ⊗ gi = gi ⊗ gi. (A.14)

Covariant/contravariant components. Given a basis gi, and corresponding reciprocal
basis gi, with the property gi · gj = δji , any vector a can be resolved on this basis by

a = (a · gi)g
i = (a · gi)gi. (A.15)

This comes from taking the identity matrix in the form (A.14) and writing out the identity
a = Ia.

Fundamental region for crystal symmetry. Given a crystal symmetry group gκ, the
fundamental region, Qfund, is defined as a distinguished element of the coset SO(3,R)/gκ.
For a particular R ∈ SO(3,R), the mapping SO(3,R) → SO(3,R)/gκ → Qfund : Rfund =
Qfund(R) is obtained by taking the product of R ∈ SO(3,R) with every element in gκ, and
taking the resulting quaternion for this product with minimum first entry, say.

Axial vectors. Let Ω ∈ skw be a skew symmetric second order tensor. Denote the
associated axial vector by

ω ≡ 〈Ω〉, (A.16)

where the Cartesian components of ω are given by

ωj =
1

2
εijkΩik. (A.17)

A.2 Thomson scattering

This section provides justification for the Thomson scattering factor. Here we consider a
wave propagating in the e1 direction. According to (Guiner, 1963) we have the electric field
due to an accelerated electorn as

E(r) =
(µ0e

4πr
sinφ

)
a (A.18)

where a is the acceleration vector,

a =
E0e

m
,

where E0 is the electic field vector of the propagating wave, e is the electron charge, and m
is the mass of the particle, and φ is the angle between the position of the field test point, e.g.
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Figure A.1: Electric field vector orthogonal to the plane of the particle.

Figure A.2: Electric field vector in the plane of the particle.

cosφ = r · a. Here µ0 = 4πx10−7, e = 1.6x10−19, r is in meters and E in volts per meter.
Next,

|E| = µ

4π

e2

m
|E0|

sinφ

r
. (A.19)

For a propagating vector with field direction e3, φ = π/2 so

E =
µ

4π

e2

m

|E0|
r
. (A.20)

The ratio of incicent to scattered intensity is equivalent to the ratio between the squared
amplitutdes of the respective electic fields, so that

I = I0

(µ0

4π

)2 e4

m2r2
. (A.21)
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Considering a unit surface area, the solid angle is

Ω =
S

r2
=

1

r2
,

so that the intensity per unit solid angle is given by

I = I0

(µ0

4π

)2 e4
m2

= r2eI0, (A.22)

where re ≡ µ0

4π
e2

m
is called the classical radius of the electron (Guiner, 1963). For an elecric

field vector in the plane of the test point, φ = π/2− 2θ

Ill = r2eI0 cos
2 2θ. (A.23)

Figure A.3: Arbitrary electric field orientation.

For an arbitrary electric field, E = E1e1 + E2e2,

Ie = r2eI0(E1 + E2 cos
2 2θ). (A.24)

Then for an isotropic electric field, E1 = E2 = 1/2 so

Ie = r2eI0

(
1 + cos2 2θ

2

)
. (A.25)

So Ie is the energy per unit solid angle per second by one electron in a beam of power I0
per square meter. The scattered beam has intensity Ie/r

2.
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A.3 Derivation of Cartesian representation for crystal-

lographic unit cell

In this section we compute the details of the derivation of the structural map reported in
Equation (3.223). See also Neustadt et al. (1968) for an alternative approach. We pick up
the development from Equation (3.220). Recall we adopt the convention for the mapped cell
edges as

a = ae1, b = ber(γ; e1, e2), c = cĉ(α, β, γ)

where from the definition of the internal angles α, β we have ĉ · â ≡ cos β, ĉ · b̂ ≡ cosα. We
require an expression for c, hence ĉ, on the Cartesian basis e1, e2, e3. To achieve this, we
find it useful to consider the intermediate step of constructing a basis which is reciprocal to
that defined by

h1 = e1, h2 = er(γ; e1, e2), h3 = e3. (A.26)

Note that h1 = â and h2 = b̂. Denote the corresponding reciprocal basis by h∗
i . Next we

making use of the result of Equation (A.14), we can write

ĉ = Iĉ = (ĉ · hi)h
∗
i = (ĉ · h∗

i )hi, (A.27)

relations which hold for any vector. Expanding Equation (A.27)2, we have the representation

ĉ = (ĉ · h1)h
∗
1 + (ĉ · h2)h

∗
2 + (ĉ · h3)h

∗
3

= cos βh∗
1 + cosαh∗

2 + ĉ3h
∗
3, (A.28)

where we have used h1 = â and h2 = b̂ along with the definition of the unit cell angles β, α.
The unknown component ĉ3 can be obtained from the unit vector property, |ĉ| = 1, which
we now show. Using Equation (A.28) we have

1 = |ĉ|2 = cos2 β (h∗
1 · h∗

1) + cos2 α (h∗
2 · h∗

2) + ĉ23 + 2 cosβ cosα (h∗
1 · h∗

2) . (A.29)

where we have used h∗
1 ·h∗

3 = h∗
2 ·h∗

3 = 0, which will be justified shortly. After some algebra,
we obtain

ĉ3 =
(
1− cos2 β (h∗

1 · h∗
1)− cos2 α (h∗

2 · h∗
2)− 2 cos β cosα (h∗

1 · h∗
2)
)1/2

(A.30)

We now construct the reciprocal basis h∗
i to complete the specification of c. Using (A.27)3

applied to h∗
i we have

h∗
i =

(
h∗
i · h∗

j

)
hj = h∗ijhj (A.31)

where h∗ij = h∗
i ·h∗

j is the reciprocal metric tensor. It is related to the metric tensor hij = hi·hj

by the relation [h∗ij] = [hij]
−1, where the bracket notation is used to emphasize matrix

representations. To see this, use the sequence δik = h∗
i · hk = h∗ijhj · hk = h∗ijhjk. Then by
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the uniqueness of matrix inverses, [h∗ij] ≡ [hij]
−1. Next we explicitly compute the metric hij

in matrix form as

[hij] =

h1 · h1 h1 · h2 h1 · h3

h2 · h1 h2 · h2 h2 · h3

h3 · h1 h3 · h2 h3 · h3

 =

 1 cos γ 0
cos γ 1 0
0 0 1

 , (A.32)

where we have used Equations (A.26) and (3.221). The reciprocal metric h∗ij is obtained by
taking the matrix inverse, giving

[h∗ij] = [hij]
−1 =

 1/(1− cos2 γ) − cos γ/(1− cos2 γ) 0
− cos γ/(1− cos2 γ) 1/(1− cos2 γ) 0

0 0 1

 . (A.33)

Use of the entries of Equation (A.33) in Equation (A.31) with Equation (A.26) gives the
reciprocal bases {h∗

i } as

h∗
1 =

(
1

1− cos2 γ

)
e1 +

(
− cos γ

1− cos2 γ

)
er(γ; e1, e2) (A.34)

h∗
2 =

(
− cos γ

1− cos2 γ

)
e1 +

(
1

1− cos2 γ

)
er(γ; e1, e2) (A.35)

h∗
3 = e3. (A.36)

Now to complete Equation (A.30) we require

h∗
1 · h∗

2 = h∗12 =
− cos γ

1− cos2 γ
, h∗

1 · h∗
1,h

∗
2 · h∗

2 = h∗11, h
∗
22 =

1

1− cos2 γ
. (A.37)

where we have used Equation (A.33). These results simplify Equation (A.30) to

ĉ3 =
1

sin γ

(
1 + 2 cosα cos β cos γ − cos2 α− cos2 β − cos2 γ

)1/2
. (A.38)

Finally, we have
c = cĉ = c cos βh∗

1 + c cosαh∗
2 + cĉ3h

∗
3, (A.39)

where ĉ3 is given by Equation (A.38).
We now are able to compute Hs from Equation (3.222). Recall that

Hs = a⊗ e1 + b⊗ e2 + c⊗ e3.

We compute the matrix representation of Hs from Hij = ei ·Hsej by using Equations (A.34)
- (A.36) in Equation (A.39), along with Equations (3.218),(3.219) and (3.221). We obtain

Hs =

a b cos γ c cos β
0 b sin γ c(cosα− cos β cos γ)/ sin γ

0 0 c (1 + 2 cosα cos β cos γ − cos2 α− cos2 β − cos2 γ)
1/2
/ sin γ


This matches accepted results from the literature (Bernier et al., 2011).
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Table A.1: FCC Slip systems Anand1996,Anand1997

α [nα
0 ] [mα

0 ]
1 1,1,1 1,1̄,0
2 1,1,1 1̄,0,1
3 1,1,1 0,1,1̄
4 1̄,1,1 1,0,1
5 1̄,1,1 1̄,1̄,0
6 1̄,1,1 0,1,1̄
7 1,1̄,1 1̄,0,1
8 1,1̄,1 0,1̄,1̄
9 1,1̄,1 1,1,0
10 1̄,1̄,1 1̄,1,0
11 1̄,1̄,1 1,0,1
12 1̄,1̄,1 0,1̄,1̄

Table A.2: BCC Slip systems Anand1997

i [ni
0] [mi

0] i [ni
0] [mi

0]
1 1,1,0 1,1̄,1 13 2,1,1̄ 1,1̄,1
2 0,1,1 1,1̄,1 14 1,1,2 1,1,1̄
3 1,1,0 1̄,1,1 15 1̄,1,2 1,1̄,1
4 0,1,1 1,1,1̄ 16 1,1̄,2 1̄,1,1
5 0,1,1 1,1̄,1 17 1,2̄,1 1,1,1
6 1,0,1 1,1,1̄ 18 1,2,1 1,1̄,1
7 1,0,1 1̄,1,1 19 1̄,2,1 1,1,1̄
8 1̄,1,0 1,1,1 20 1,2̄,1 1,1,1
9 1̄,1,0 1,1,1̄ 21 1,2,1̄ 1̄,1,1
10 1̄,0,1 1,1,1 22 2,1,1 1̄,1,1
11 1̄,0,1 1,1̄,1 23 2̄,1,1 1,1,1
12 0,1̄,1 1,1,1 24 2,1̄,1 1,1,1̄
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A.4 Integration

In this section is reviewed the technology to integrate over a discretized grid. We pick up
the development from §2.4.2.1. Consider the position field x(X). We discretize the material
domain with nodal points X(i). We can regard this field as the sum of basis elements of the
form

x(X) =
N∑
i=1

x(i)Φ(i)(X), (A.40)

where N is the number of nodes in the discretization and where the basis functions Φ have
the property

Φ(i)(X
(j)) = δji . (A.41)

This is the natural example in mechanics textbooks, but the form of (A.40) holds for any
field over material coordinates, f(X) : R3 → R through

f(X) =
N∑
i=1

f (i)Φ(i)(X). (A.42)

We can use this discretization method to perform numerical integrations in a convenient
fashion. Consider integration on the material domain, required in §2.4.2.1. For convenience,
denote this material domain by β. For each local zone in β(highlighted in Figure 2.13) we
can define consider a reference region η, ξ ∈ [−1, 1]× [−1, 1], which maps to βby a function
of the form (A.40), so that over a zone,

X(η, ξ) =
3∑

i=0

X(i)Φ(i)(η, ξ), (A.43)

with, to be explicit,

Φ0(η = 1, ξ = −1) = 1
Φ0(η = 1, ξ = 1) = 0
Φ0(η = −1, ξ = 1) = 0
Φ0(η = −1, ξ = −1) = 0

Φ1(η = 1, ξ = −1) = 0
Φ1(η = 1, ξ = 1) = 1
Φ1(η = −1, ξ = 1) = 0
Φ1(η = −1, ξ = −1) = 0

(A.44)

Φ2(η = 1, ξ = −1) = 0
Φ2(η = 1, ξ = 1) = 0
Φ2(η = −1, ξ = 1) = 1
Φ2(η = −1, ξ = −1) = 0

Φ3(η = 1, ξ = −1) = 0
Φ3(η = 1, ξ = 1) = 0
Φ3(η = −1, ξ = 1) = 0
Φ3(η = −1, ξ = −1) = 1

. (A.45)

The general form the basis functions Φ is then

Φ(η, ξ) = c1 + c2η + c3ξ + c4ηξ. (A.46)

Each of the set of equations in (A.44), (A.45) can be used with (A.46) in order to determine
the representations for basisfunc(i), i = 0, 1, 2, 3.
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Area computation In (2.255) the area of the material zones is required. To compute
this, we need

A =

∫
Ω

dX

=

∫
X−1Ω

X∗(dX)

=

∫ 1

−1

∫ 1

−1

(det∇X)dη ∧ dξ, (A.47)

where X∗ denotes the pullback to η, ξ of the volume element dX = dX1∧dX2. Using (A.43),
we can compute

∇X =
3∑

i=0

X(i) ⊗∇Φ(i) (A.48)

or in matrix form

∇X =

[
∂X1/∂η ∂X1/∂ξ
∂X2/∂η ∂X2/∂ξ

]
, (A.49)

with the shorthand Xi ≡ X · ei. To be explicit, again using (A.43) in (A.49) gives

∂X1/∂η =
∑3

i=0 X
(i)
1 ∂Φ(i)/∂η

∂X1/∂ξ =
∑3

i=0 X
(i)
1 ∂Φ(i)/∂ξ

∂X2/∂η =
∑3

i=0 X
(i)
2 ∂Φ(i)/∂η

∂X2/∂ξ =
∑3

i=0 X
(i)
2 ∂Φ(i)/∂ξ

, (A.50)

with Φ(i) given by the general form (A.46) with solution for the parameters c1, c2, c3, c4 based
on the conditions (A.44), (A.45).

The integration in (A.47) is carried out using Gaussian quadrature; for the linear func-
tions employed here we simply obtain from (A.47)

A =

∫ 1

−1

∫ 1

−1

(det∇X)dη ∧ dξ = 4 · (det∇X)(0, 0), (A.51)

where (det∇X)(0, 0) denotes evaluation of the function det∇X at η, ξ = 0, 0.
In §2.4.2.1 we arrived at nodal values of ∇ × K−1 on the material reference grid, X(i).

We require an estimate for ∇ × K−1 for the zones, in order to use (2.16) to get the true
dislocation content. To do this we proceed as before, with the discretization

∇×K−1(X) =
3∑

i=0

(∇×K−1)(i)Φ(i)(X). (A.52)
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Then, integrating over a zone by pulling back to η, ξ and using first order Gaussian quadra-
ture gives

∇×K−1
zone =

1

A

∫
Ω

∇×K−1(X)dX

=
1

A

∫ 1

−1

∫ 1

−1

3∑
i=0

(∇×K−1)(i)Φ(i)(η, ξ)(det∇X)dη ∧ dξ

=
4

A

(
3∑

i=0

(∇×K−1)(i)Φ(i)(0, 0)

)
(det∇X)(0, 0) (A.53)

=
3∑

i=0

(∇×K−1)(i)Φ(i)(0, 0) (A.54)

=
1

4

3∑
i=0

(∇×K−1)(i). (A.55)

That is, the averaged zonal value is the average of the nodal values. The last result, (A.55),
comes from calculation of the c1 coefficient for each of Φ(i), which turns out to evaluate to
1/4 for each Φ(i), i = 0, 1, 2, 3.
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A.5 Constitutive functions for hexagonal crystals

In this section we consider similar exposition as done in §2.3.3.1, but we look at the hexagonal
symmetries. These crystals are characterized by the presence of the rotations S1,S2 ∈ gκ,
where Si = R̂(e3, 2πi/3), i = 1, 2. The analysis used previously in §2.3.3.1 is complicated
by the incorporation of these rotations, and so deserves the special treatment made here.

From our experience, the hexagonal symmetries are the most difficult to generate polyno-
mial constitutive functions for. For a scalar function of a single symmetric tensor argument,
one can follow the examples in Green and Adkins (1970, p. 20). We found that the in-
corporation of more functional arguments required a slightly more careful and systematic
procedure than was evident in Green and Adkins (1970). As our example, we consider consti-
tutive functions of the form Ω = Ω(A). Recall from Table 2.1 that this required generating
a scalar valued function

F (A,v) = F (A11, A22, A33, A23, A13, A12, v1, v2, v3) , (A.56)

where A is a symmetric tensor and v is an axial vector. The spin Ω(A) is then obtained
from

Ω(A) = εijk
∂F

∂vj

∣∣∣∣
v=0

ei ⊗ ek, (A.57)

where F is invariant under hexagonal symmetry.
Before beginning the analysis, let us define the objectives and restate additional infor-

mation. Our target symmetry group is the dihexagonal-dipyramidal group, the maximum
symmetry group in the hexagonal system. The elements are

gdihexagonal-dipyramidal
κ = I,S1,S2,C,CS1,CS2,R1,R1S1,R1S2,R2,R2S1,R2S2,R3, (A.58)

R3S1,R3S2,D1,D1S1,D1S2,D2,D2S1,D2S2,D3,D3S1,D3S2, (A.59)

where all rotations Ri,Di,C were previously defined in the text after Equation (2.140). For
use with (A.57) the function (A.56) is restricted to be only (up to) linear order in v, and up
to cubic order in A, as was done for the cubic crystals.

In order to apply the technique in Green and Adkins (1970), it turns out to be useful
to first restrict constitutive functions based on the elements S1,S2, instead of applying, for
instance, (2.146) when R1 ∈ gκ. Therefore the symmetry group we start with is

gtrigonal-pyramidal
κ = I,S1,S2, (A.60)

which defines the trigonal-pyramidal class. We now start the procedure considering (A.60)
and building up to (A.59).
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Constitutive reductions. By executing the rotations S1, S2, we can see profitable refor-
mulation of (A.56) by defining

y1 = A11 y2 =
1

4
A11 −

√
3

2
A12 +

3

4
A22 y3 =

1

4
A11 +

√
3

2
A12 +

3

4
A22

(A.61)

and

z1 = A13 z2 = −1

2
A13 +

√
3

2
A23 z3 = −1

2
A13 −

√
3

2
A23, (A.62)

as defined in Green and Adkins (1970, eq. 1.12.2). For the present consideration, we require
the additional definitions

w1 = v1 w2 = −1

2
v1 +

√
3

2
v2 w3 = −1

2
v1 −

√
3

2
v1. (A.63)

Then using (A.61)-(A.63) with (A.56) we have the equivalent reformulation

F = F (A11, A22, A33, A23, A13, A12, v1, v2, v3) = F (y1, y2, y3, z1, z2, z3, w1, w2, w3, A33, v3) .
(A.64)

The benefit of these redefinitions is that under S1,S2 we have the transformations

F = F (y1, y2, y3, z1, z2, z3, w1, w2, w3, A33, v3)
= F (y3, y1, y2, z3, z1, z2, w3, w1, w2, A33, v3)
= F (y2, y3, y1, z2, z3, z1, w2, w3, w1, A33, v3)

, (A.65)

which satisfies the requirements of Theorem 6 and Theorem 4, giving the integrity elements

y1 + y2 + y3, y1y2 + y2y3 + y1y3, y1y2y3, etc. (A.66)

Therefore, we have the expression

F = F (y1 + y2 + y3, y1y2 + y2y3 + y1y3, y1y2y3,
y1z1 + y2z2 + y3z3, y1 (z2 − z3) + y2 (z3 − z1) + y3 (z1 − z2) , [...]
y1z1w1 + y2z2w2 + y3z3w3, y1z1 (w2 − w3) + y2z2 (w3 − w1) + y3z3 (w1 − w2) , A33, v3),

(A.67)
where [...] denotes all the terms not explicitly shown, but which are prescribed by Theorem 6.

Now, to get to the class (A.59) from the invariant expression (A.67), we consider the
effect of each of the elements in gdihexagonal-dipyramidal

κ on the basis elements of (A.67). The
main operation which will cull elements is when a basis element changes sign; for example,
due to one of the reflections R1,R2,R3 ∈ gdihexagonal-dipyramidal

κ . Then Theorem 1 applies to
the terms which change sign, and this may cause the invariant to be eliminated at the order
of expansion we are considering.

By using this process for each the hexagonal point groups (hexagonal-dipyramidal, ditrigonal-
dipyramidal, etc.), we can get any desired constitutive equation. But here, recall we are
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interested in the dihexagonal-dipyramidal point group. After checking all the elements of
(A.67), the term

i1 = z1 (w2 − w3) + z2 (w3 − w1) + z3 (w1 − w2) (A.68)

is invariant under gdihexagonal-dipyramidal
κ . This is the lowest order contribution to (A.56), with

linear dependence on A. In a similar fashion we obtain the quadratic order element

i2 = y1z1 (w2 − w3) + y2z2 (w3 − w1) + y3z3 (w1 − w2) , (A.69)

which is found to be invariant under gdihexagonal-dipyramidal
κ . For the cubic order terms consider,

for instance, the action of R1, which gives the transformations (2.146). This operation
switches the sign on the axial component

v̄3 = −v3 (A.70)

as well as the following terms from (A.67):

ȳ2ȳ3 (ȳ2 − ȳ3) + ȳ3ȳ1 (ȳ3 − ȳ1) + ȳ1ȳ2 (ȳ1 − ȳ2) =
− (y2y3 (y2 − y3) + y3y1 (y3 − y1) + y1y2 (y1 − y2)) ,

(A.71)

and
z̄2z̄3 (ȳ2 − ȳ3) + z̄3z̄1 (ȳ3 − ȳ1) + z̄1z̄2 (ȳ1 − ȳ2)
= − (z2z3 (y2 − y3) + z3z1 (y3 − y1) + z1z2 (y1 − y2)) .

(A.72)

Therefore, using Theorem 1, we have the cubic order integrity elements

i3 = v3 [y2y3 (y2 − y3) + y3y1 (y3 − y1) + y1y2 (y1 − y2)]
i4 = v3 [z2z3 (y2 − y3) + z3z1 (y3 − y1) + z1z2 (y1 − y2)] .

(A.73)

As a side note, transverse isotropy is the same as hexagonal for the low order terms. Con-
stitutive equations are easier to obtain for transverse isotropy since one considers using the
structural tensor e3 and then following the prescription of Liu (1982) to achieve the rep-
resentation. However the element i3 of (A.73) is not picked up by considering transverse
isotropy, therefore the procedure in this section is required to get a complete integrity basis
for hexagonal crystals up to cubic order.

Polynomial reconstruction. We now have the necessary terms for F (A,v) which mul-
tiply v linearly. These terms serve as the generators of the skew tensors in the language of
Liu (2002, Ch. 4). In order to get the proper cubic expansion however we need to obtain
terms of A which do not multiply v, up to quadratic order. After considering the action of
each element of gdihexagonal-dipyramidal

κ in (A.67), we find we must retain the following elements:

A33, y1 + y2 + y3, y1y2 + y2y3 + y3y1, z1z2 + z2z3 + z3z1. (A.74)
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Using (A.61), (A.62) and removing numerical factors, these elements are the familiar ones
from (3.365),

A33, A11 + A22, A11A22 − A2
12, A

2
13 + A2

23. (A.75)

Similarly, the other elements are rewritten as

i1 = z1 (w2 − w3) + z2 (w3 − w1) + z3 (w1 − w2) = A13v2 − A23v1, (A.76)

i2 = y1z1 (w2 − w3) + y2z2 (w3 − w1) + y3z3 (w1 − w2) =
−2A12A13v1 − A11A23v1 − 3A22A23v1 + 3A11A13v2 + A13A22v2 + 2A12A23v2,

(A.77)

i3 = v3 [y2y3 (y2 − y3) + y3y1 (y3 − y1) + y1y2 (y1 − y2)] =
−3A2

11A12v3 + 4A3
12v3 + 6A11A12A22v3 − 3A12A

2
22v3,

(A.78)

and
i4 = v3 [z2z3 (y2 − y3) + z3z1 (y3 − y1) + z1z2 (y1 − y2)] =
−A12A

2
13v3 + A11A13A23v3 − A13A22A23v3 + A12A

2
23v3.

(A.79)

These substitutions make the full polynomial expansion for (A.56) easier to see. Following
(3.365), denote

x1 = A11 + A22

x2 = A33

y∗1 = A11A22 − A2
12

y∗2 = A2
13 + A2

23.
(A.80)

Then the expansion for (A.56) for dihexagonal-dipyramidal symmetry is

F (A,v) = a1i1+

(
2∑

j=1

2∑
k=1

bjkxjxk

)
i1+

(
2∑

j=1

cjy
∗
j

)
i1+

(
2∑

j=1

kjxj

)
i2+ l1i3+ l2i4, (A.81)

which has |{ai}| = 1 constant at linear order and |{bjk}| + |{cj}| + |{kj}| + |{lj}| = 3 +
2 + 2 + 2 = 9 constants at third order, for a total of 10 constants. The linear order term,
i1, represents an axial vector in the basal plane (span e1, e2). Therefore in order to get
lattice reorientation from prismatic slip, we need to go to the third order, and utilize the
full expansion (A.81). Experimental measurements then dictate which constants can be
profitably removed or retained, without affecting the predictions of the model.



APPENDIX A. APPENDIX 348

A.6 Additional numerical results

A.6.1 Localization bands

This set of figures look at different mesh resolutions at fixed grain orientation, see §2.4.2.3.2
for a description of the boundary conditions and other details. The figure sequence are plots
of ‖ξ‖2, ‖K‖. This set of figures is with hardening A3 = 0.1, θ0 = 0.
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.4: Mesh resolution comparison for axial extension with local weakening. ‖ξ‖2
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =0

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.5: Mesh resolution comparison for axial extension with local weakening. ‖ξ‖2
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =1

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.6: Mesh resolution comparison for axial extension with local weakening. ‖ξ‖2
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =2
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.7: Mesh resolution comparison for axial extension with local weakening. ‖ξ‖2
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =3

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.8: Mesh resolution comparison for axial extension with local weakening. ‖ξ‖2
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =4

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.9: Mesh resolution comparison for axial extension with local weakening. ‖ξ‖2
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =5
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.10: Mesh resolution comparison for axial extension with local weakening. ‖ξ‖2
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =6
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.11: Mesh resolution comparison for axial extension with local weakening. ‖K‖
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =0

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.12: Mesh resolution comparison for axial extension with local weakening. ‖K‖
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =1

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.13: Mesh resolution comparison for axial extension with local weakening. ‖K‖
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =2
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.14: Mesh resolution comparison for axial extension with local weakening. ‖K‖
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =3

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.15: Mesh resolution comparison for axial extension with local weakening. ‖K‖
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =4

(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.16: Mesh resolution comparison for axial extension with local weakening. ‖K‖
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =5
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(a) 12× 12 mesh (b) 24× 24 mesh (c) 48× 48 mesh

Figure A.17: Mesh resolution comparison for axial extension with local weakening. ‖K‖
A3 = 0.1, ν = 0.0003, hardeningmode=1, θ0 = 0, sequence number =6
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A.6.2 Shock contraction

See §2.4.2.3.3 for information about the boundary conditions and other details. In all the
following figure captions, the units of ν are GPa−1 ·s. This first set of figures look at different
grain orientations, at progressively lower plastic viscosity, ν, tending to the rate independent
limit. The mesh resolution was 40×40. The figure sequence are plots of ‖E‖2, tr S, ‖ξ‖2, ‖K‖
respectively.
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(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.18: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 0

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.19: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 1

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.20: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 2

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.21: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 3



APPENDIX A. APPENDIX 357

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.22: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 4

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.23: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 5

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.24: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 6



APPENDIX A. APPENDIX 358

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.25: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 0

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.26: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 1

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.27: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 2

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.28: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 3
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(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.29: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 4

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.30: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 5

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.31: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 6
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(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.32: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 0

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.33: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 1

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.34: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 2

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.35: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 3
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(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.36: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 4

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.37: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 5

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.38: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 6
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(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.39: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 0

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.40: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 1

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.41: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 2

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.42: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 3
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(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.43: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 4

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.44: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 5

(a) θ0 =0 (b) θ0 =10 (c) θ0 =20 (d) θ0 =30 (e) θ0 =40 (f) θ0 =45

Figure A.45: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.1000, hardening mode=1, sequence number = 6
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This second set of figures look at a lower viscosity. The mesh resolution was 40 × 40.
The figure sequence are plots of ‖E‖2, tr S, ‖ξ‖2, ‖K‖.
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(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.46: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 0

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.47: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 1

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.48: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 2

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.49: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 3
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(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.50: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 4

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.51: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 5

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.52: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 6
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(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.53: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 0

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.54: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 1

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.55: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 2

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.56: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 3
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(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.57: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 4

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.58: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 5

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.59: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 6
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(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.60: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 0

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.61: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 1

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.62: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 2

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.63: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 3
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(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.64: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 4

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.65: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 5

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.66: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 6
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(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.67: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 0

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.68: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 1

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.69: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 2

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.70: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 3
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(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.71: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 4

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.72: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 5

(a) theta0 = 0 (b) theta0 = 20 (c) theta0 = 30 (d) theta0 = 45

Figure A.73: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 6
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This second set of figures look at a yet lower viscosity. The mesh resolution was 40× 40.
The figure sequence are plots of ‖E‖2, tr S, ‖ξ‖2, ‖K‖.
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(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.74: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 0

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.75: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 1

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.76: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 2

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.77: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 3
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(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.78: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 4

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.79: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 5

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.80: Mesh resolution comparison for shock contraction. The colormap shows ‖E‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 6
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(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.81: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 0

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.82: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 1

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.83: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 2

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.84: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 3
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(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.85: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 4

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.86: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 5

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.87: Mesh resolution comparison for shock contraction. The colormap shows tr S.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 6
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(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.88: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 0

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.89: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 1

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.90: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 2

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.91: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 3
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(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.92: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 4

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.93: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 5

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.94: Mesh resolution comparison for shock contraction. The colormap shows ‖ξ‖2.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 6
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(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.95: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 0

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.96: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 1

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.97: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 2

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.98: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 3
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(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.99: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 4

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.100: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 5

(a) theta0 = 0 (b) theta0 = 10 (c) theta0 = 20 (d) theta0 = 30 (e) theta0 = 40 (f) theta0 = 45

Figure A.101: Mesh resolution comparison for shock contraction. The colormap shows ‖K‖.
A3 = 0, ν = 0.0001, hardening mode=1, sequence number = 6
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A.6.3 Shear deformation

See §2.4.2.3.4 for information on the boundary conditions and other details. This set of
figures looks at a vertical velocity on the right boundary, traction free top and bottom, with
fixed left edge. The mesh resolution was 40×40. The figure sequence are plots of ‖ξ‖2, ‖K‖.
This set is for A3 = 0.
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(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure A.102: Mesh resolution comparison for shear boundary condition. The colormap
shows ‖ξ‖2. A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 0

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure A.103: Mesh resolution comparison for shear boundary condition. The colormap
shows ‖ξ‖2. A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 1

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure A.104: Mesh resolution comparison for shear boundary condition. The colormap
shows ‖ξ‖2. A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 2

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure A.105: Mesh resolution comparison for shear boundary condition. The colormap
shows ‖ξ‖2. A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 3
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(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure A.106: Mesh resolution comparison for shear boundary condition. The colormap
shows ‖K‖. A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 0

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure A.107: Mesh resolution comparison for shear boundary condition. The colormap
shows ‖K‖. A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 1

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure A.108: Mesh resolution comparison for shear boundary condition. The colormap
shows ‖K‖. A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 2

(a) θ = 0 (b) θ = 10 (c) θ = 20 (d) θ = 30 (e) θ = 40 (f) θ = 45

Figure A.109: Mesh resolution comparison for shear boundary condition. The colormap
shows ‖K‖. A3 = 0, ν = 0.0010, hardening mode=1, sequence number = 3


